Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Psychiatry Investig ; 18(7): 645-651, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34265198

ABSTRACT

OBJECTIVE: Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by inattention, hyperactivity, and impulsivity. In contrast to neurocognitive measurements of inattention and impulsivity, there has been limited research regarding the objective measurement of hyperactivity in youths with ADHD. The purpose of the present study was to investigate the clinical effectiveness of a newly developed Robot-assisted Kinematic Measure for ADHD (RAKMA) in children with ADHD. METHODS: In total, 35 children with ADHD aged 5 to 12 years and 50 healthy controls (HCs) were recruited, and the parents completed the Child Behavior Checklist and the Korean ADHD Diagnostic Scale. RAKMA performance was represented by RAKMA stimulus-response and hyperactivity variables. We compared the RAKMA performance of those with ADHD and with that of HCs and also investigated the correlation between the RAKMA variables and ADHD clinical scale scores. RESULTS: Significant differences between the ADHD and HC groups were observed regarding most RAKMA variables, including correct reactions, commission errors, omission errors, reaction times, migration distance, and migration speed scores. Significant correlations were detected between various ADHD clinical scale scores and RAKMA variables. CONCLUSION: The RAKMA was a clinically useful tool for objectively measuring hyperactivity symptoms in children with ADHD. Further studies with larger samples are warranted.

2.
Int J Mol Sci ; 22(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801235

ABSTRACT

The cell-cell/cell-matrix interactions between myoblasts and their extracellular microenvironment have been shown to play a crucial role in the regulation of in vitro myogenic differentiation and in vivo skeletal muscle regeneration. In this study, by harnessing the heparin-mimicking polymer, poly(sodium-4-styrenesulfonate) (PSS), which has a negatively charged surface, we engineered an in vitro cell culture platform for the purpose of recapitulating in vivo muscle atrophy-like phenotypes. Our initial findings showed that heparin-mimicking moieties inhibited the fusion of mononucleated myoblasts into multinucleated myotubes, as indicated by the decreased gene and protein expression levels of myogenic factors, myotube fusion-related markers, and focal adhesion kinase (FAK). We further elucidated the underlying molecular mechanism via transcriptome analyses, observing that the insulin/PI3K/mTOR and Wnt signaling pathways were significantly downregulated by heparin-mimicking moieties through the inhibition of FAK/Cav3. Taken together, the easy-to-adapt heparin-mimicking polymer-based in vitro cell culture platform could be an attractive platform for potential applications in drug screening, providing clear readouts of changes in insulin/PI3K/mTOR and Wnt signaling pathways.


Subject(s)
Gene Expression Regulation/drug effects , Heparin/chemistry , Muscle Fibers, Skeletal/cytology , Muscle, Skeletal/cytology , Muscular Atrophy/pathology , Myoblasts/cytology , Polymers/administration & dosage , Animals , Cell Culture Techniques , Cell Differentiation , Cell Fusion , Gene Expression Profiling , In Vitro Techniques , Mice , Mice, Inbred C57BL , Muscle Development , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Myoblasts/drug effects , Myoblasts/metabolism , Phenotype , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...