Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1212: 339909, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35623783

ABSTRACT

Diagnosis of SARS-CoV-2 infection through rapid, accurate, and sensitive testing is the most important and fundamental step in coping with the COVID-19 epidemic. We have developed a sensitive fluorometric assay to detect SARS-CoV-2 viral RNA without thermal cycling. This assay system, based on tandem isothermal gene amplification (TIGA), is composed of ternary rolling circle amplification (t-RCA) and subsequent strand displacement amplification (SDA) coupled with G-quadruplex-generating RCA (SDA/GQ-RCA). Without the need to convert viral RNA into cDNA, viral RNA forms a ternary complex composed of hairpin primer (HP) and dumbbell padlock DNA during the t-RCA process. t-RCA generates a long chain of single-stranded DNA (ssDNA) with tandemly repeated hairpin structures that are subjected to SDA. SDA produces multiple short ssDNAs from t-RCA products, which then serve as primers for the second RCA reaction. A long ssDNA harboring repeated copies of the G-quadruplex is produced in the second round of RCA. Emission of enhanced fluorescence by thioflavin T, which intercalates into the G-quadruplex, allows fluorometric detection of amplified viral genes. This fluorometric analysis sensitively detected SARS-CoV-2 RNA as low as 5.9 aM, with a linear range between 0.2 fM and 200 fM within 1 h. Hence, this isothermal gene amplification method without reverse transcription of viral RNA can be applied to diagnose COVID-19 with high sensitivity and accuracy as an alternative to current PCR-based diagnosis.


Subject(s)
COVID-19 , Reverse Transcription , COVID-19/diagnosis , DNA, Single-Stranded , Gene Amplification , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics
2.
Analyst ; 145(24): 8002-8007, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33410429

ABSTRACT

Since influenza occurs globally every year, it is important to develop a facile and accurate method to detect the influenza virus. This study aimed at developing a sensitive fluorometric assay for detecting influenza viral RNA through tandem gene amplification methods including reverse transcription PCR (RT-PCR), followed by strand displacement amplification (SDA) coupled with rolling circle amplification (RCA). Influenza viral RNA was initially amplified by RT-PCR with a tailed reverse primer containing an additional sequence for SDA. The RT-PCR amplicon was then subjected to SDA, yielding multiple copies of single-stranded DNA (ssDNA) that can be used as a primer for subsequent RCA. Thereafter, a long ssDNA segment harboring tandem repeated G-quadruplexes that were generated through RCA was intercalated by Thioflavin T, yielding a strong fluorescence signal indicating the presence of the target viral RNA. Fluorometric analysis detected influenza viral RNA ranging from 50 pg to 500 pg with a limit of detection of 6.2 pg with a signal-to-background ratio of 10 and identified each influenza virus strain (H1N1, H3N2, and influenza B). Thus, the present method for the label-free fluorometric detection of viral RNA via tandem gene amplifications combining RT-PCR-coupled SDA and G-quadruplex-generating RCA would facilitate the efficient diagnosis of influenza infection.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Fluorometry , Humans , Influenza A Virus, H3N2 Subtype , Influenza, Human/diagnosis , Nucleic Acid Amplification Techniques , RNA, Viral/genetics
3.
J Biol Chem ; 294(44): 16465-16478, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31540970

ABSTRACT

RNase E is a component of the RNA degradosome complex and plays a key role in RNA degradation and maturation in Escherichia coli RNase E-mediated target RNA degradation typically involves the RNA chaperone Hfq and requires small guide RNAs (sRNAs) acting as a seed by binding to short (7-12-bp) complementary regions in target RNA sequences. Here, using recombinantly expressed and purified proteins, site-directed mutagenesis, and RNA cleavage and protein cross-linking assays, we investigated Hfq-independent RNA decay by RNase E. Exploring its RNA substrate preferences in the absence of Hfq, we observed that RNase E preferentially cleaves AU-rich sites of single-stranded regions of RNA substrates that are annealed to an sRNA that contains a monophosphate at its 5'-end. We further found that the quaternary structure of RNase E is also important for complete, Hfq-independent cleavage at sites both proximal and distal to the sRNA-binding site within target RNAs containing monophosphorylated 5'-ends. Of note, genetic RNase E variants with unstable quaternary structure exhibited decreased catalytic activity. In summary, our results show that RNase E can degrade its target RNAs in the absence of the RNA chaperone Hfq. We conclude that RNase E-mediated, Hfq-independent RNA decay in E. coli requires a cognate sRNA sequence for annealing to the target RNA, a 5'-monophosphate at the RNA 5'-end, and a stable RNase E quaternary structure.


Subject(s)
Endoribonucleases/metabolism , RNA Stability/physiology , Binding Sites , Endoribonucleases/physiology , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/physiology , Host Factor 1 Protein/chemistry , Host Factor 1 Protein/metabolism , Host Factor 1 Protein/physiology , Molecular Chaperones/metabolism , Nucleic Acid Conformation , RNA, Bacterial/metabolism , RNA, Messenger/genetics , RNA, Small Untranslated/metabolism , Ribonuclease, Pancreatic , Ribonucleases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...