Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 12(7): 5318-24, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22966564

ABSTRACT

High-performance bottom-gate (BG) poly-Si polysilicon-oxide-nitride-oxide-silicon (SONOS) TFTs with single grain boundary perpendicular to the channel direction have been demonstrated via simple excimer-laser-crystallization (ELC) method. Under an appropriate laser irradiation energy density, the silicon grain growth started from the thicker sidewalls intrinsically caused by the bottom-gate structure and impinged in the center of the channel. Therefore, the proposed ELC BG SONOS TFTs exhibited superior transistor characteristics than the conventional solid-phase-crystallized ones, such as higher field effect mobility of 393 cm2/V-s and steeper subthreshold swing of 0.296 V/dec. Due to the high field effect mobility, the electron velocity, impact ionization, and conduction current density could be enhanced effectively, thus improving the memory performance. Based on this mobility-enhanced scheme, the proposed ELC BG SONOS TFTs exhibited better performance in terms of relatively large memory window, high program/erase speed, long retention time, and 2-bit operation. Such an ELC BG SONOS TFT with single-grain boundary in the channel is compatible with the conventional a-Si TFT process and therefore very promising for the embedded memory in the system-on-panel applications.

2.
J Nanosci Nanotechnol ; 12(7): 5505-9, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22966599

ABSTRACT

High-performance low-temperature polycrystalline silicon (Poly-Si) thin-film transistors (TFTs) have been fabricated with two-dimensional (2-D) location-controlled grain boundaries using excimer laser crystallization (ELC). By locally increased thickness of the amorphous silicon (a-Si) film that was served as the seed crystals with a partial-melting crystallization scheme, the cross-shaped grain boundary structures were produced between the thicker a-Si grids. The Poly-Si TFTs with one parallel and one perpendicular grain boundary along the channel direction could therefore be fabricated to reach excellent field-effect mobility of 530 cm2/V-s while the conventional ones exhibited field-effect mobility of 198 cm2/V-s. Furthermore, the proposed TFTs achieved not only superior electric properties but also improved uniformity as compared with the conventional ones owing to the artificially controlled locations of grain boundaries.

3.
J Nanosci Nanotechnol ; 12(7): 5742-6, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22966646

ABSTRACT

A technigal with the polydimethylsiloxane (PDMS) solution infiltrated into the SiOx-coated CNTAs has been utilized to directly transfer the CNTAs away from the silicon substrate. The oxide coating layer was utilized to protect the morpholgy of as-grown patterned vertical aligmed carbon nanotube (CNTs) arrays. The high density plasma reactive ions etching (HDP-RIE) system was used to make the CNTs emerge from the surface of the flexible substrate and modify the crystallines of CNTs. After the protecting oxide was HDP-RIE-processed for 8 min, the emission current properties were enhanced to be 1.03 V/microm and 1.43 V/microm, respectively, for the turn-on field and the threshold field, as compared with 1.25 V/microm and 1.59 V/microm for the as-grown CNTs, accordingly. The Field Emission (FE) enhancement after dry etching could be attributed to the open-ended structures and better crystalline.

4.
J Nanosci Nanotechnol ; 12(7): 5783-7, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22966654

ABSTRACT

In this paper, high-performance bottom-gate (BG) thin-film transistors (TFTs) with zinc oxide (ZnO) artificially location-controlled lateral grain growth have been prepared via low-temperature hydrothermal method. For the proper design of source/drain structure of ZnO/Ti/Pt thin films, the grains can be laterally grown from the under-cut ZnO beneath the Ti/Pt layer. Consequently, the single one vertical grain boundary perpendicular to the current flow will be produced in the channel region as the grown grains from the source/drain both sides are impinged. As compared with the conventional sputtered ZnO BG-TFTs, the proposed location-controlled hydrothermal ZnO BG-TFTs (W/L = 250 microm/10 microm) demonstrated the higher field-effect mobility of 6.09 cm2/V x s, lower threshold voltage of 3.67 V, higher on/off current ratio above 10(6), and superior current drivability, reflecting the high-quality ZnO thin films with less grain boundary effect in the channel region.

5.
J Nanosci Nanotechnol ; 11(7): 5612-7, 2011 Jul.
Article in English | MEDLINE | ID: mdl-22121579

ABSTRACT

The effects of active layer thickness and device dimensions on nanometal-induced crystallization (nano-MIC) were studied to determine the electrical characteristics of the polycrystalline silicon (poly-Si) thin-film transistors (TFTs) with bottom-gate structures. The nano-MIC poly-Si film was obtained via deposition of a 0.4-nm-thick Ni film on the amorphous silicon layer and subsequent annealing at 550 degrees C for 0.5 to 8 h. The EDS revealed a approximately 0.1% Ni concentration in the poly-Si film. The cross-sectional TEM image shows the vertical-grain growth mechanism, where the bottom side of the grain exhibits a larger crytalline area than the top side. Therefore, the field effect mobility of the bottom-gate poly-Si TFTs increases with increased active-amorphous-silicon (a-Si) thickness. Furthermore, the mobility increases when the device dimensions are scaled down. A mechanism for explaining such phenomenon in relation to the nano-MIC bottom-gate poly-Si TFTs was also proposed.

6.
J Nanosci Nanotechnol ; 11(7): 5737-43, 2011 Jul.
Article in English | MEDLINE | ID: mdl-22121600

ABSTRACT

A transparent ultraviolet (UV) sensor using nanoheterojunctions (NHJs) composed of p-type NiO nanoflowers (NFs) and n-type ZnO nanowires (NWs) was prepared through a sequential low-temperature hydrothermal-growth process. The devices that were annealed in an oxygen (O2) ambient exhibited better rectification behavior (I forward/I reverse = 427), a lower forward threshold voltage (V(th) = 0.98 V), a lower leakage current (1.68 x 10(-5) A/cm2), and superior sensitivity (I uv/I dark = 57.8; I visible/I dark = 1.25) to UV light (lambda = 325 nm) than the unannealed devices. The remarkably improved device performances and optoelectronic characteristics of the annealed p-NiO-NF/n-ZnO-NW NHJs can be associated with their fewer structural defects, fewer interfacial defects, and better crystallinity. A stable and repeatable operation of dynamic photoresponse was also observed in the annealed devices. The excellent sensitivity and repeatable photoresponse to UV light of the hydrothermally grown p-NiO-NF/n-ZnO-NW NHJs annealed in a suitable O2 ambient indicate that they can be applied to nano-integrated optoelectronic devices.

7.
J Nanosci Nanotechnol ; 11(7): 6013-9, 2011 Jul.
Article in English | MEDLINE | ID: mdl-22121649

ABSTRACT

The aluminum-doped ZnO (AZO) nanostructures with different Al concentrations were synthesized on AZO/glass substrate via a simple hydrothermal growth method at a temperature as low as 85 degrees C. The morphologies, crystallinity, optical emission properties, and chemical bonding states of AZO nanostructures show evident dependence on the aluminum dosage. The morphologies of AZO nanostructures were changed from vertically aligned nanowires (NWs), and NWs coexisted with nanosheets (NSs), to complete NSs in respect of the Al-dosages of 0-3 at.%, 5 at.%, and 7 at.%, correspondingly. The undoped ZnO and lightly Al-doped AZO (< or = 3 at.%) NWs are single-crystalline wurtzite structure. In contrast, heavily Al-doped AZO sample is polycrystalline. The AZO nanostructure with 3 at.% Al-dosages reveals the optimal crystallinity and less structural defects, reflecting the longest carrier lifetime and highest conductivity. Consequently, the field-emission characteristics of such an AZO emitter can exhibit the higher current density, larger field-enhancement factor (beta) of 3131, lower turn-on field of 2.17 V/microm, and lower threshold field of 3.43 V/microm.

SELECTION OF CITATIONS
SEARCH DETAIL
...