Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(12): e52603, 2012.
Article in English | MEDLINE | ID: mdl-23285107

ABSTRACT

Heterologous expression of HIV-1 Gag in a variety of host cells results in its packaging into virus-like particles (VLPs) that are subsequently released into the extracellular milieu. This phenomenon represents a useful tool for probing cellular factors required for viral budding and has contributed to the discovery of roles for ubiquitin ligases and the endosomal sorting complexes required for transport (ESCRTs) in viral budding. These factors are highly conserved throughout eukaryotes and have been studied extensively in the yeast Saccharomyces cerevisiae, a model eukaryote previously utilized as a host for the production of VLPs. We used heterologous expression of HIV Gag in yeast spheroplasts to examine the role of ESCRTs and associated factors (Rsp5, a HECT ubiquitin ligase of the Nedd4 family; Bro1, a homolog of Alix; and Vps4, the AAA-ATPase required for ESCRT function in all contexts/organisms investigated) in the generation of VLPs. Our data reveal: 1) characterized Gag-ESCRT interaction motifs (late domains) are not required for VLP budding, 2) loss of function alleles of the essential HECT ubiquitin ligase Rsp5 do not display defects in VLP formation, and 3) ESCRT function is not required for VLP formation from spheroplasts. These results suggest that the egress of HIV Gag from yeast cells is distinct from the most commonly described mode of exit from mammalian cells, instead mimicking ESCRT-independent VLP formation observed in a subset of mammalian cells. As such, budding of Gag from yeast cells appears to represent ESCRT-independent budding relevant to viral replication in at least some situations. Thus the myriad of genetic and biochemical tools available in the yeast system may be of utility in the study of this aspect of viral budding.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Saccharomyces cerevisiae/metabolism , Spheroplasts/metabolism , gag Gene Products, Human Immunodeficiency Virus/metabolism , Gene Expression , Humans , Protein Interaction Domains and Motifs , Protein Transport , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Virus Release , gag Gene Products, Human Immunodeficiency Virus/genetics
2.
J Biol Chem ; 284(46): 32126-37, 2009 Nov 13.
Article in English | MEDLINE | ID: mdl-19744925

ABSTRACT

Ubiquitin modification of endosomal membrane proteins is a signal for active inclusion into the Multivesicular Body (MVB) pathway, resulting in lysosomal degradation. However, the endosome represents a dynamic site of protein sorting with a majority of proteins destined for recycling, rather than MVB targeting. Substrate recognition by ubiquitin ligases is therefore highly regulated. We have investigated substrate recognition by the Nedd4 ortholog Rsp5 as a model for understanding ligase-substrate interactions. Rsp5 interacts directly with its substrate Cps1 via a novel interaction mode. Perturbation of this mode of interaction revealed a compensatory role for the Rsp5 adaptor Bsd2. These results highlight the ability of Rsp5 to interact with substrates via multiple modalities, suggesting additional mechanisms of regulating this interaction and relevant outcomes.


Subject(s)
Carboxypeptidases/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Peptide Fragments/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Ubiquitin/metabolism , Amino Acid Motifs , Carboxypeptidases/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Protein Conformation , Protein Transport , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Ubiquitin-Protein Ligase Complexes/genetics , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...