Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Chemosphere ; 357: 142049, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631499

ABSTRACT

In the face of increasing nitrogen demand for crop cultivation driven by population growth, this study presents a sustainable solution to address both the heightened demand and the energy-intensive process of nitrogen removal from wastewater. Our approach involves the removal of nitrogen from wastewater and its subsequent return to the soil as a fertilizer. Using biochar derived from Aesculus turbinata fruit shells (ATFS), a by-product of post-medical use, we investigated the effect of pyrolysis temperature on the NH4-N adsorption capacity of ATFS biochar (ATFS-BC). Notably, the ATFS-BC pyrolyzed at 300 °C (ATFS-BC300) exhibited the highest NH4-N adsorption capacity of 15.61 mg/g. The superior performance of ATFS-BC300 was attributed to its higher number of oxygen functional groups and more negatively charged surface, which contributed to the enhanced NH4-N adsorption. The removal of NH4-N by ATFS-BC300 involved both physical diffusion and chemisorption, with NH4-N forming a robust multilayer adsorption on the biochar. Alkaline conditions favored NH4-N adsorption by ATFS-BC300; however, the presence of trivalent and divalent ions hindered this process. Rice plants were cultivated to assess the potential of NH4-N adsorbed ATFS-BC300 (NH4-ATFS-BC300) as a nitrogen fertilizer. Remarkably, medium doses of NH4-ATFS-BC300 (594.5 kg/ha) exhibited key agronomic traits similar to those of the commercial nitrogen fertilizer in rice seedlings. Furthermore, high doses of NH4-ATFS-BC300 demonstrated superior agronomic traits compared to the commercial fertilizer. This study establishes the viability of utilizing ATFS-BC300 as a dual-purpose solution for wastewater treatment and nitrogen fertilizer supply, presenting a promising avenue for addressing environmental challenges.


Subject(s)
Ammonia , Charcoal , Feasibility Studies , Fertilizers , Nitrogen , Wastewater , Charcoal/chemistry , Wastewater/chemistry , Ammonia/chemistry , Adsorption , Fruit/chemistry , Water Pollutants, Chemical/analysis , Oryza/growth & development , Waste Disposal, Fluid/methods
2.
Chemosphere ; 351: 141262, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262492

ABSTRACT

A large amount of manure is generated from concentrated animal feeding operations (CAFOs), leading to serious environmental issues and hazardous risks from pathogens, such as methicillin-resistant Staphylococcus aureus. Therefore, developing an effective method for manure disposal is essential. Thus, in this study, we suggest the use of CO2 in pyrolysis of hen manure (HM) as an effective method to convert the carbon in HM into syngas (especially carbon monoxide (CO)). HM was used and tested as the model compound. From the results of thermo-gravimetric analysis, the decarboxylation of CaCO3 in HM in the presence of N2 was realized at temperatures ranging from 638 to 754 °C. The Boudouard reaction was observed at ≥ 664 °C in the presence of CO2. Despite the lack of occurrence of the Boudouard reaction, more CO formation was observed in the presence of CO2 at ≥ 460 °C. This was deemed as a homogeneous reaction induced by CO2. Considering the high Ca content of HM, HM biochar in N2 and CO2 were used as adsorbent for removal of Cadmium (Cd), which is toxic heavy metal. The adsorption capacities of HM_N2 and HM_CO2 were 302.4 and 95.7 mg g-1, respectively. The superior performance of HM_N2 is mainly attributed to the presence of Ca(OH)2, which provides favorable (alkaline) conditions for precipitation and ion exchange. Our results indicate the environmental benefits from using CO2. Specifically, CO2 (representative greenhouse gas) converted into fuel. Given this, pyrolysis of HM in the presence of CO2 was achieved at ≤ 640 °C, and the atmospheric condition should be switched from CO2 to N2 at ≥ 640 °C to ensure the decarboxylation of CaCO3.


Subject(s)
Cadmium , Methicillin-Resistant Staphylococcus aureus , Animals , Female , Manure , Pyrolysis , Carbon Dioxide , Chickens , Charcoal
3.
Brain Neurorehabil ; 16(3): e35, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38047097

ABSTRACT

Fibromuscular dysplasia (FMD) is a congenital vascular anomaly resulting in arterial stenosis and weakening of typically medium-sized arteries. It is a noninflammatory, nonatherosclerotic arterial disease that affects most commonly the renal and internal carotid arteries, but intracranial FMD in the pediatric population is very rare. We report a young age-onset ischemic stroke patient with FMD affecting the middle cerebral artery (MCA). A 14-year-old boy was admitted with left-side weakness during physical education at school. The brain magnetic resonance (MR) imaging revealed an acute ischemic stroke in the right basal ganglia and internal capsule, while the MR angiogram showed segmental intraluminal stenosis in the left proximal MCA. The transfemoral angiography revealed the pathognomonic sign of a "string of beads" at the proximal MCA area. The clinical course was stable, and the boy gradually recovered from the motor weakness of his arm and leg. FMD should be considered as a potential cause of pediatric stroke.

4.
Molecules ; 28(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38138580

ABSTRACT

Doxorubicin (DOX), an anthracycline-based chemotherapeutic agent, is widely used to treat various types of cancer; however, prolonged treatment induces cardiomyotoxicity. Although studies have been performed to overcome DOX-induced cardiotoxicity (DICT), no effective method is currently available. This study investigated the effects and potential mechanisms of Poncirus trifoliata aqueous extract (PTA) in DICT. Changes in cell survival were assessed in H9c2 rat cardiomyocytes and MDA-MB-231 human breast cancer cells. The C57BL/6 mice were treated with DOX to induce DICT in vivo, and alterations in electrophysiological characteristics, serum biomarkers, and histological features were examined. The PTA treatment inhibited DOX-induced decrease in H9c2 cell viability but did not affect the MDA-MB-231 cell viability. Additionally, the PTA restored the abnormal heart rate, R-R interval, QT interval, and ST segment and inhibited the decrease in serum cardiac and hepatic toxicity indicators in the DICT model. Moreover, the PTA administration protected against myocardial fibrosis and apoptosis in the heart tissue of mice with DICT. PTA treatment restored DOX-induced decrease in the expression of NAD(P)H dehydrogenase quinone acceptor oxidoreductase 1 in a PTA concentration-dependent manner. In conclusion, the PTA inhibitory effect on DICT is attributable to its antioxidant properties, suggesting the potential of PTA as a phytotherapeutic agent for DICT.


Subject(s)
Myocytes, Cardiac , Poncirus , Rats , Mice , Humans , Animals , NAD/metabolism , Poncirus/metabolism , Up-Regulation , Oxidative Stress , Mice, Inbred C57BL , Doxorubicin/toxicity , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Oxidoreductases/metabolism , Quinones/pharmacology
5.
Chemosphere ; 336: 139191, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37307930

ABSTRACT

Quercus wood was used for thermal energy production, and wood bottom ash (WDBA) was used as a medium for water purification and soil fertilizer in accordance with the recently proposed food-water-energy nexus concept. The wood contained a gross calorific value of 14.83 MJ kg-1, and the gas generated during thermal energy production has the advantage of not requiring a desulfurization unit due to its low sulfur content. Wood-fired boilers emit less CO2 and SOX than coal boilers. The WDBA had a Ca content of 66.0%, and Ca existed in the forms of CaCO3 and Ca(OH)2. WDBA absorbed P by reacting with Ca in the form of Ca5(PO4)3OH. Kinetic and isotherm models revealed that the results of the experimental work were in good agreement with the pseudo-second-order and Langmuir models, respectively. The maximum P adsorption capacity of WDBA was 76.8 mg g-1, and 6.67 g L-1 of WDBA dose could completely remove P in water. The toxic units of WDBA tested using Daphnia magna were 6.1, and P adsorbed WDBA (P-WDBA) showed no toxicity. P-WDBA was used as an alternative P fertilizer for rice growth. P-WDBA application resulted in significantly greater rice growth in terms of all agronomic values compared to N and K treatments without P. This study proposed the utilization of WDBA, obtained from thermal energy production, to remove P from wastewater and replenish P in the soil for rice growth.


Subject(s)
Phosphorus , Wastewater , Fertilizers , Adsorption , Soil , Coal Ash , Water
6.
J Clin Virol ; 164: 105497, 2023 07.
Article in English | MEDLINE | ID: mdl-37253299

ABSTRACT

BACKGROUND: Rotavirus group A (RVA) is a causative agent of acute gastroenteritis among young children worldwide, despite the global expansion of rotavirus vaccination. In Korea, although the prevalence of RVA has been reduced among young children owing to vaccination, nosocomial infections still occur among neonates. OBJECTIVES: The aim of this study was to investigate the molecular epidemiology of RVA strains associated with several neonatal outbreaks in Seoul from 2017 to 2020. STUDY DESIGN: Clinical and environmental samples were collected and screened for the presence of RVA using ELISA and PCR targeting VP6, respectively. RVA-positive strains were genotyped via RT-PCR and subsequent sequencing of VP4 and VP7 and were phylogenetically compared with RVA strains from other countries. RESULTS: During 2017-2020, a total of 15 RVA outbreaks occurred at neonatal facilities (six in hospital neonatal wards and nine in postpartum care centers) in Seoul, and only two RVA genotypes were detected: G4P[6] and G8P[6]. G8P[6] emerged in Seoul November 2018 and immediately became the predominant genotype among neonates, at least up to 2020. Phylogenetic analysis revealed that the G8P[6] genotype in this study was closely related to G8P[6] strains first identified in Korea in 2017, but differed from G8P[6] strains detected in Africa. CONCLUSIONS: A novel G8P[6] genotype of RVA strains has emerged and caused outbreaks among neonates in Seoul. Continued surveillance for circulating RVA genotypes is imperative to monitor genotype changes and their potential risks to public health.


Subject(s)
Cross Infection , Disease Outbreaks , Molecular Epidemiology , Phylogeny , Rotavirus Infections , Rotavirus , Female , Humans , Infant, Newborn , Feces/virology , Genotype , Rotavirus/genetics , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Seoul/epidemiology , Cross Infection/epidemiology , Cross Infection/virology , Capsid Proteins/genetics , Environmental Microbiology , Male
7.
J Environ Manage ; 339: 117891, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37058929

ABSTRACT

This study addresses ways to circulate the flow of phosphorus (P) from water to soil to improve water quality and provide a sustainable supply of P into soil. Here, bottom ash (BA_CCM), the byproduct of the combustion of cattle manure, which is performed for obtaining energy, was used to remove P in wastewater. Next, the P-captured BA_CCM was used as P fertilizer for rice growth. BA_CCM was primarily composed of Ca (49.4%), C (24.0%), and P (9.9%), and the crystalline phases of Ca were calcium carbonate (CaCO3) and hydroxyapatite (Ca5(PO4)3OH). The mechanism of P removal by BA_CCM involves the formation of hydroxyapatite by reacting Ca2+ with PO43-. A reaction time of 3 h was required to achieve P adsorption to BA_CCM, and the maximum P adsorption capacity of BA_CCM was 45.46 mg/g. The increase in solution pH reduced P adsorption. However, at pH > 5, the P adsorption amount was maintained regardless of the pH increase. The presence of 10 mM SO42- and CO32- reduced P adsorption by 28.4% and 21.5%, respectively, and the impact of the presence of Cl- and NO3- was less than 10%. The feasibility of BA_CCM was tested using real wastewater, and 3.33 g/L of BA_CCM dose achieved a P removal ratio of 99.8% and a residual concentration of <0.02 mg/L. The toxicity unit of BA_CCM determined for Daphnia magna (D. magna) was 5.1; however, the BA_CCM after P adsorption (P-BA_CCM) did not show any toxicity to D. magna. BA_CCM after P adsorption was used as an alternative to commercial P fertilizer. Rice fertilized with a medium level of P-BA_CCM showed better agronomic values for most agronomic traits, except root length, than that seen with the commercial P fertilizer. This study suggests that BA_CCM can be used as a value-added product to address environmental issues.


Subject(s)
Oryza , Phosphorus , Cattle , Animals , Phosphorus/chemistry , Soil , Coal Ash , Manure , Fertilizers , Wastewater , Adsorption , Hydroxyapatites
8.
Materials (Basel) ; 16(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36837004

ABSTRACT

In recent years, several studies have reported the recycling of by-products generated by the paper industry and their application to the construction industry. A majority of the existing studies used waste paper sludge ash, and considerable energy is consumed in such incineration processes. This may further contribute to air pollution. In this study, we used waste newspaper (WNP), which underwent a simple crushing process without a separate high-temperature treatment process, and we integrated it in cement mortar. We prepared mortars containing 0%, 0.2%, 0.4%, 0.6%, 0.8%, and 1.0% ground WNP as a cement substitute. Subsequently, the fluidity, compressive strength, tensile strength, carbonation depth, drying shrinkage, and microstructure of the mortars were compared and analyzed. The 28-day compressive strength of the mortar samples with WNP was approximately 3.2-16.1% higher than that of the control sample. The 28-day accelerated carbonation depth of the samples with WNP was approximately 1.03-1.61 mm. Furthermore, their carbonation resistance was approximately 5.2-39.4% higher than that of the control sample. Compressive strength, tensile strength, and carbonation resistance were improved by appropriately using ground WNP as a cement substitute in cement mortar. In this study, the appropriate amount of WNP according to the mechanical properties of cement mortar was found to be 0.4-0.8%, and considering the durability characteristics, the value 0.6 was the most ideal.

9.
Medicine (Baltimore) ; 102(8): e32936, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36827069

ABSTRACT

INTRODUCTION: Cardiac rehabilitation (CR) is strongly indicated in patients with acute myocardial infarction (MI), and has been proven to reduce mortality and recurrence and improve patients quality of life. Although clinical guidelines for CR have already been developed domestically and internationally, hospital-based CR remains underutilized. Currently, studies exploring strategies to improve CR participation in South Korea and Asia are limited. OBJECTIVES: This study aims to compare the effect of providing CR financial incentives to post-MI patients referred for outpatient CR and to confirm the effect of increasing CR participation and completion rates. METHODS: This single-blind, pragmatic, randomized controlled trial will be conducted at 2 tertiary hospitals for CR after acute MI. The control and experimental groups will be randomized, with each group consisting of 24 participants (total of 48 participants) assigned in a 1:1 ratio. The experimental group will receive 4, 7, and 11 USD per completed session of CR during the 1st to 12th, 13 to 24th, and 25th to 36th sessions of CR, respectively, for 3 months after enrollment. Participants who completed the 36 sessions will receive 260 USD incentives. The primary outcomes at 3 months will be used to assess the CR participation rate, as the number of CR sessions completed, and CR completion, as attendance of sessions greater than 50%, thus completion of ≥18 sessions. The outcomes will be used to compare changes in cardiorespiratory function (VO2 max, VO2 at anabolic threshold), the Korean activity scale index, EuroQol 5 dimensions, and the patient health questionnaire at 3 months after discharge and 6 and 12 months after baseline. DISCUSSION: Providing financial incentives may confirm the effect of increasing CR on participation and completion rates.


Subject(s)
Cardiac Rehabilitation , Myocardial Infarction , Humans , Cardiac Rehabilitation/methods , Single-Blind Method , Quality of Life , Motivation , Myocardial Infarction/rehabilitation
10.
Signal Transduct Target Ther ; 7(1): 367, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36253361

ABSTRACT

The biosynthesis of host lipids and/or lipid droplets (LDs) has been studied extensively as a putative therapeutic target in diverse viral infections. However, directly targeting the LD lipolytic catabolism in virus-infected cells has not been widely investigated. Here, we show the linkage of the LD-associated lipase activation to the breakdown of LDs for the generation of free fatty acids (FFAs) at the late stage of diverse RNA viral infections, which represents a broad-spectrum antiviral target. Dysfunction of membrane transporter systems due to virus-induced cell injury results in intracellular malnutrition at the late stage of infection, thereby making the virus more dependent on the FFAs generated from LD storage for viral morphogenesis and as a source of energy. The replication of SARS-CoV-2 and influenza A virus (IAV), which is suppressed by the treatment with LD-associated lipases inhibitors, is rescued by supplementation with FFAs. The administration of lipase inhibitors, either individually or in a combination with virus-targeting drugs, protects mice from lethal IAV infection and mitigates severe lung lesions in SARS-CoV-2-infected hamsters. Moreover, the lipase inhibitors significantly reduce proinflammatory cytokine levels in the lungs of SARS-CoV-2- and IAV-challenged animals, a cause of a cytokine storm important for the critical infection or mortality of COVID-19 and IAV patients. In conclusion, the results reveal that lipase-mediated intracellular LD lipolysis is commonly exploited to facilitate RNA virus replication and furthermore suggest that pharmacological inhibitors of LD-associated lipases could be used to curb current COVID-19- and future pandemic outbreaks of potentially troublesome RNA virus infection in humans.


Subject(s)
COVID-19 Drug Treatment , Lipolysis , Orthomyxoviridae Infections , Animals , Humans , Mice , Antiviral Agents/pharmacology , Cytokines , Fatty Acids, Nonesterified , Influenza A virus , Lipase , Membrane Transport Proteins , RNA , SARS-CoV-2 , Orthomyxoviridae Infections/drug therapy
11.
Cells ; 11(18)2022 09 08.
Article in English | MEDLINE | ID: mdl-36139376

ABSTRACT

Plant-derived extracellular vesicles, (EVs), have recently gained attention as potential therapeutic candidates. However, the varying properties of plants that are dependent on their growth conditions, and the unsustainable production of plant-derived EVs hinder drug development. Herein, we analyzed the secondary metabolites of Aster yomena callus-derived EVs (AYC-EVs) obtained via plant tissue cultures and performed an immune functional assay to assess the potential therapeutic effects of AYC-EVs against inflammatory diseases. AYC-EVs, approximately 225 nm in size, were isolated using tangential flow filtration (TFF) and cushioned ultracentrifugation. Metabolomic analysis, using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS), revealed that AYC-EVs contained 17 major metabolites. AYC-EVs inhibited the phenotypic and functional maturation of LPS-treated dendritic cells (DCs). Furthermore, LPS-treated DCs exposed to AYC-EVs showed decreased immunostimulatory capacity during induction of CD4+ and CD8+ T-cell proliferation and activation. AYC-EVs inhibited T-cell reactions associated with the etiology of asthma in asthmatic mouse models and improved various symptoms of asthma. This regulatory effect of AYC-EVs resembled that of dexamethasone, which is currently used to treat inflammatory diseases. These results provide a foundation for the development of plant-derived therapeutic agents for the treatment of various inflammatory diseases, as well as providing an insight into the possible mechanisms of action of AYC-EVs.


Subject(s)
Asthma , Extracellular Vesicles , Animals , Cell Proliferation , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Extracellular Vesicles/physiology , Lipopolysaccharides/pharmacology , Mice
12.
RSC Adv ; 12(34): 21978-21981, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36043098

ABSTRACT

This paper proposes low-melting-point eutectic salts containing RbCl as electrolytes for light weight thermal batteries. The handleability of the eutectic salts was remarkably improved for commercialisation. Their performance as thermal battery molten-salt electrolytes was verified using tests on a single cell and a 12-cell stacked battery.

13.
BMC Health Serv Res ; 22(1): 999, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35932056

ABSTRACT

BACKGROUND: Cardiac rehabilitation (CR) is a prognostic management strategy to help patients with CVD achieve a good quality of life and lower the rates of recurrence, readmission, and premature death from disease. Globally, cardiac rehabilitation is poorly established in hospitals and communities. Hence, this study aimed to investigate the discrepancies in the perceptions of the need for CR programs and relevant health policies between directors of hospitals and health policy personnel in South Korea to shed light on the status and to establish practically superior and effective strategies to promote CR in South Korea. METHODS: We sent a questionnaire to 592 public health policy managers and directors of selected hospitals, 132 of whom returned a completed questionnaire (response rate: 22.3%). The participants were categorized into five types of organizations depending on their practice of PCI (Percutaneous Coronary Intervention), establishment of cardiac rehabilitation, director of hospital, and government's policy makers. Differences in the opinions between directors of hospitals that perform/do not perform PCI, directors of hospitals with/without cardiac rehabilitation, and between hospital directors and health policy makers were analyzed. RESULTS: Responses about targeting diseases for cardiac rehabilitation, patients' roles in cardiac rehabilitation, hospitals' roles in cardiac rehabilitation, and governmental health policies' roles in cardiac rehabilitation were more positive among hospitals that perform PCI than those that do not. Responses to questions about the effectiveness of cardiac rehabilitation and hospitals' roles in cardiac rehabilitation tended to be more positive in hospitals with cardiac rehabilitation than in those without. Hospital directors responded more positively to questions about targeting diseases for cardiac rehabilitation and governmental health policies' roles in cardiac rehabilitation than policy makers, and both hospitals and public organizations provided negative responses to the question about patients' roles in cardiac rehabilitation. Responses to questions about targeting diseases for cardiac rehabilitation, patients' roles in cardiac rehabilitation, and governmental health policies' roles in cardiac rehabilitation were more positive in hospitals that perform PCI than those that do not and public organizations. CONCLUSIONS: Hospitals must ensure timely referral, provide education, and promote the need for cardiac rehabilitation. In addition, governmental socioeconomic support is needed in a varity of aspects.


Subject(s)
Cardiac Rehabilitation , Percutaneous Coronary Intervention , Health Personnel , Health Policy , Humans , Percutaneous Coronary Intervention/rehabilitation , Quality of Life , Surveys and Questionnaires
14.
Polymers (Basel) ; 14(9)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35566976

ABSTRACT

Cement concrete is the most commonly used building and construction material worldwide because of its many advantages. Over time, however, it develops cracks due to shrinkage and tension, which may lead to premature failure of the entire structure. Recently, the incorporation of polymers has been explored to improve the overall strength and durability of cement concrete. In this study, two types of chitosan-based bio-inspired polymers (a-BIP and b-BIP) were synthesized and mixed with cement mortar in different proportions (5-20%). The fluidity of the resulting mixtures and the properties of the hardened samples, such as the compressive and tensile strengths, drying shrinkage, and carbonation resistance, were evaluated. The characteristics of the polymers were tuned by varying the pH during their syntheses, and their structures were characterized using nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, and ultraviolet-visible spectroscopy. After 28 days of aging, all samples containing BIPs (35.9-41.4 MPa) had noticeably higher compressive strength than the control sample (33.2 MPa). The tensile strength showed a similar improvement (up to 19.1%). Overall, the mechanical properties and durability of the samples were separately dependent on the type and amount of BIP.

15.
Sci Rep ; 12(1): 4474, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35297402

ABSTRACT

Although numerous cathode materials with excellent properties have been developed for use in molten salt thermal batteries, similar progress is yet to be made with anode materials. Herein, a high-performance lithium-impregnated metal foam anode (LIMFA) is fabricated by impregnating molten lithium into a gold-coated iron-chrome-aluminium (FeCrAl) foam at 400 °C. A test cell employing the LIMFA FeCrAl anode exhibited a specific capacity of 2627 As g-1. For comparison, a cell with a conventional Li(Si) anode was also discharged, demonstrating a specific capacity of 982 As g-1. This significant improvement in performance can be attributed to the large amount (18 wt%) of lithium incorporated into the FeCrAl foam and the ability of the FeCrAl foam to absorb and immobilize molten lithium without adopting a cup system. For thermal batteries without a cup, the LIMFA FeCrAl provides the highest-reported specific capacity and a flat discharge voltage curve of molten lithium. After cell discharge, the FeCrAl foam exhibited no lithium leakage, surface damage, or structural collapse. Given these advantageous properties, in addition to its high specific capacity, LIMFA FeCrAl is expected to aid the development of thermal batteries with enhanced performance.

16.
Materials (Basel) ; 15(5)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35269197

ABSTRACT

With the trend toward taller and larger structures, the demand for high-strength and lightweight cement concrete has increased in the construction industry. Equipment for transporting ready-mixed concrete is frequently used to bring concrete to construction sites, and washing this equipment generates a large amount of recycled water, which is an industrial by-product. In this study, we recycled this water as the pre-wetting water for lightweight aggregate and as mixing water, and we substituted blast furnace slag powder (BS) and fly ash (FA) as cementitious materials (Cm). In addition, we evaluated the fluidity, compressive strength, tensile strength, drying shrinkage, and accelerated carbonation depth of lightweight ternary cementitious mortars (TCMs) containing artificial lightweight aggregate and recycled water. The 28-day compressive strengths of the lightweight TCM specimens with BS and FA were ~47.2-51.7 MPa, except for the specimen with 20% each of BS and FA (40.2 MPa), which was higher than that of the control specimen with 100% OPC (45.9 MPa). Meanwhile, the 28-day tensile strengths of the lightweight TCM specimens containing BS and FA were ~2.81-3.20 MPa, which are ~13.7-29.5% higher than those of the control specimen. In this study, the TCM specimen with 5% each of BS and FA performed the best in terms of the combination of compressive strength, tensile strength, and carbonation resistance.

17.
Sensors (Basel) ; 22(4)2022 Feb 20.
Article in English | MEDLINE | ID: mdl-35214555

ABSTRACT

Classifying space targets from debris is critical for radar resource management as well as rapid response during the mid-course phase of space target flight. Due to advances in deep learning techniques, various approaches have been studied to classify space targets by using micro-Doppler signatures. Previous studies have only used micro-Doppler signatures such as spectrogram and cadence velocity diagram (CVD), but in this paper, we propose a method to generate micro-Doppler signatures taking into account the relative incident angle that a radar can obtain during the target tracking process. The AlexNet and ResNet-18 networks, which are representative convolutional neural network architectures, are transfer-learned using two types of datasets constructed using the proposed and conventional signatures to classify six classes of space targets and a debris-cone, rounded cone, cone with empennages, cylinder, curved plate, and square plate. Among the proposed signatures, the spectrogram had lower classification accuracy than the conventional spectrogram, but the classification accuracy increased from 88.97% to 92.11% for CVD. Furthermore, when recalculated not with six classes but simply with only two classes of precessing space targets and tumbling debris, the proposed spectrogram and CVD show the classification accuracy of over 99.82% for both AlexNet and ResNet-18. Specially, for two classes, CVD provided results with higher accuracy than the spectrogram.


Subject(s)
Neural Networks, Computer , Space Flight , Bone Plates , Radar , Ultrasonography, Doppler
18.
Chemosphere ; 287(Pt 3): 132267, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34537455

ABSTRACT

This study investigated the solution for two environmental issues: excess of P in water and its deficiency in soil, which is restored by transferring the adsorbed P from water into the soil using eggshell as an adsorbent. The eggshells were calcined at different temperatures to improve their adsorption capacity, and evaluated for their physical/chemical properties and P adsorption capacity. The eggshells calcined at 800 °C (CES-800) had the highest P adsorption; CaCO3 decomposed into 23.6% of CaO and 40.8% of Ca(OH)2, eluting more Ca that reacted with soluble P in water. X-ray diffraction analysis confirmed that CES-800 removed P as hydroxylapatite by reacting with Ca. Pseudo-first-order and Langmuir models suitably described the kinetic and equilibrium of P adsorption by CES-800, respectively. The maximum adsorption capacity of CES-800 was 108.2 mg g-1. As the solution pH increased from 3 to 11, the adsorption amount decreased from 99.8 mg g-1 to 62.3 mg g-1. The feasibility of CES-800 as a filter medium was assessed using real lake water under dynamic flow conditions; > 90% of P removal was achieved at 158 h, and the P adsorbed was 11.5 mg g-1. When CES-800 and P adsorbed CES-800 (P-CES-800) were applied to the soil at the studied rates, the earthworms were unaffected by toxicity, suggesting the use of both adsorbents in soil without adverse effects. The shoot fresh weight, tiller number, and total dry weight significantly increased in P-CES-800 applied rice plants compared to the control plants, indicating that P-CES-800 can be a good alternative to conventional P-fertilizer in rice cultivation.


Subject(s)
Phosphorus , Water Pollutants, Chemical , Adsorption , Animals , Egg Shell/chemistry , Fertilizers , Hydrogen-Ion Concentration , Kinetics , Soil , Water , Water Pollutants, Chemical/analysis
19.
Materials (Basel) ; 14(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34771921

ABSTRACT

There have been numerous recent studies on improving the mechanical properties and durability of cement composites by mixing them with functional polymers. However, research into applying modified biopolymer such as catechol-functionalized chitosan to cement mortar or concrete is rare to the best of our knowledge. In this study, catechol-functionalized chitosan (Cat-Chit), a well-known bioinspired polymer that imitates the basic structures and functions of living organisms and biological materials in nature, was synthesized and combined with cement mortar in various proportions. The compressive strength, tensile strength, drying shrinkage, accelerated carbonation depth, and chloride-ion penetrability of these mixes were then evaluated. In the ultraviolet-visible spectra, a maximum absorption peak appeared at 280 nm, corresponding to catechol conjugation. The sample containing 7.5% Cat-Chit polymer in water (CPW) exhibited the highest compressive strength, and its 28-day compressive strength was ~20.2% higher than that of a control sample with no added polymer. The tensile strength of the samples containing 5% or more CPW was ~2.3-11.5% higher than that of the control sample. Additionally, all the Cat-Chit polymer mixtures exhibited lower carbonation depths than compared to the control sample. The total charge passing through the samples decreased as the amount of CPW increased. Thus, incorporating this polymer effectively improved the mechanical properties, carbonation resistance, and chloride-ion penetration resistance of cement mortar.

20.
Materials (Basel) ; 14(19)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34640276

ABSTRACT

Recently, interest in environmentally friendly development has increased worldwide, especially in the construction industry. In this study, blast furnace slag powder (BFSP) and mixed steel fine aggregates were applied to cement mortars to reduce the environmental damage caused by the extraction of natural aggregate and to increase the recycling rate of steel by-products in the construction industry. We investigated the fluidity, compressive strength, tensile strength, accelerated carbonation depth, and chloride ion penetration resistance of mortars with steel slag aggregate and their dependence on the presence or absence of BFSP. Because the recycling rate of ferronickel slag is low and causes environmental problems, we considered mortar samples with mixed fine aggregates containing blast furnace slag fine aggregate (BSA) and ferronickel slag fine aggregate (FSA). The results showed that the 7-day compressive strength of a sample containing both 25% BSA and 25% FSA was nearly 14.8% higher than that of the control sample. This trend is likely due to the high density and angular shape of steel slag particles. The 56-day compressive strength of the sample with BFSP and 50% FSA was approximately 64.9 MPa, which was higher than that of other samples with BFSP. In addition, the chloride ion penetrability test result indicates that the use of BFSP has a greater effect than the use of steel slag aggregate on the chloride ion penetration resistance of mortar. Thus, the substitute rate of steel slag as aggregate can be substantially enhanced if BFSP and steel slag aggregate are used in an appropriate combination.

SELECTION OF CITATIONS
SEARCH DETAIL
...