Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Hip Pelvis ; 36(1): 1-11, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38420734

ABSTRACT

Gout is triggered by the accumulation of uric acid in the body, leading to hyperuricemia. Genetic, metabolic, and environmental factors can influence this condition. Excessive uric acid buildup results in the formation of monosodium urate (MSU) crystals, which precipitate in specific areas of the body, including the joints, where they can cause symptoms of gout. While the acute and chronic symptoms of gout have been well-documented, diagnosis of gout affecting the hip joint poses significant challenges. The global incidence of gout, the most prevalent form of inflammatory arthritis, is on the rise. Evaluation of the clinical signs, laboratory results, and imaging results is generally required for diagnosis of gout in cases where MSU crystals have not been detected. Hyperuricemia is considered a primary cause of arthritis symptoms, and comprehensive guidelines for treatment are available. Therefore, the choice of medication is straightforward, and moderate effectiveness of treatment has been demonstrated. Gout is a chronic disease, requiring lifelong uric acid-lowering medications, thus application of a treatment strategy based on the target blood uric acid concentration is necessary. Consequently, cases of gout will likely be observed more frequently by hip surgeons in clinical scenarios in the future. The objective of this review is to provide an overview of the pathophysiology of gout and subsequently examine recent advances in diagnostic methods and therapeutic agents based on an understanding of its underlying mechanisms. In addition, literature on gout-related issues affecting the hip joint, providing a useful reference for hip surgeons is examined.

2.
Biomed Pharmacother ; 171: 116124, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38198957

ABSTRACT

Lung cancer represents a significant global health concern and stands as the leading cause of cancer-related mortality worldwide. The identification of specific genomic alterations such as EGFR and KRAS in lung cancer has paved the way for the development of targeted therapies. While targeted therapies for lung cancer exhibiting EGFR, MET and ALK mutations have been well-established, the options for RET mutations remain limited. Importantly, RET mutations have been found to be mutually exclusive from other genomic mutations and to be related with high incidences of brain metastasis. Given these facts, it is imperative to explore the development of RET-targeting therapies and to elucidate the mechanisms underlying metastasis in RET-expressing lung cancer cells. In this study, we investigated PLM-101, a novel dual-target inhibitor of RET/YES1, which exhibits notable anti-cancer activities against CCDC6-RET-positive cancer cells and anti-metastatic effects against YES1-positive cancer cells. Our findings shed light on the significance of the YES1-Cortactin-actin remodeling pathway in the metastasis of lung cancer cells, establishing YES1 as a promising target for suppression of metastasis. This paper unveils a novel inhibitor that effectively targets both RET and YES1, thereby demonstrating its potential to impede the growth and metastasis of RET rearrangement lung cancer.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/pathology , Protein Kinase Inhibitors/therapeutic use , Mutation , ErbB Receptors/metabolism , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins c-yes
3.
Molecules ; 29(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38257211

ABSTRACT

Suaeda glauca, a halophyte in the Amaranthaceae family, exhibits remarkable resilience to high salt and alkali stresses despite the absence of salt glands or vesicles in its leaves. While there is growing pharmacological interest in S. glauca, research on its secondary metabolites remains limited. In this study, chemical constituents of the aerial parts of S. glauca were identified using 1D- and 2D-NMR experiments, and its biological activity concerning hair loss was newly reported. Eight compounds, including alkaloids (1~3), flavonoids (4~6), and phenolics (7 and 8), were isolated. The compounds, except the flavonoids, were isolated for the first time from S. glauca. In the HPLC chromatogram, quercetin-3-O-ß-d-glucoside, kaempferol-3-O-ß-d-glucoside, and kaempferol were identified as major constituents in the extract of S. glauca. Additionally, the therapeutic potential of the extract of S. glauca and the isolated compounds 1~8 on the expressions of VEGF and IGF-1, as well as the regulation of Wnt/ß-catenin signaling, were evaluated in human follicle dermal papilla cells (HFDPCs) and human umbilical vein endothelial cells (HUVECs). Among the eight compounds, compound 4 was the most potent in terms of increasing the expression of VEGF and IGF-1 and the regulation of Wnt/ß-catenin. These findings suggest that S. glauca extract and its compounds are potential new candidates for preventing or treating hair loss.


Subject(s)
Chenopodiaceae , Insulin-Like Growth Factor I , Humans , Animals , Salt-Tolerant Plants , beta Catenin , Vascular Endothelial Growth Factor A , Alopecia , Flavonoids/pharmacology , Human Umbilical Vein Endothelial Cells , Plant Extracts/pharmacology
4.
Biosensors (Basel) ; 13(5)2023 May 10.
Article in English | MEDLINE | ID: mdl-37232895

ABSTRACT

Osteoarthritis (OA) is the most common joint disease, which accompanies pain and inconvenience in daily life owing to degradation of cartilage and adjacent tissues. In this study, we propose a simple point-of-care testing (POCT) kit for the detection of the MTF1 OA biomarker to achieve on-site clinical diagnosis of OA. The kit contains an FTA card for patient sample treatments, a sample tube for loop-mediated isothermal amplification (LAMP), and a phenolphthalein-soaked swab for naked eye detection. The MTF1 gene was isolated from synovial fluids using an FTA card and amplified using the LAMP method at 65 °C for 35 min. A test part of the phenolphthalein-soaked swab was decolorized in the presence of the MTF1 gene due to the pH change after the LAMP, but the color remained pink in the absence of the MTF1 gene. The control part of the swab served as a reference color in relation to the test part. When real-time LAMP (RT-LAMP), gel electrophoresis, and colorimetric detection of the MTF1 gene were performed, the limit of detection (LOD) was confirmed at 10 fg/µL, and the overall processes were completed in 1 h. The detection of an OA biomarker in the form of POCT was reported for the first time in this study. The introduced method is expected to serve as a POCT platform directly applicable by clinicians for easy and rapid identification of OA.


Subject(s)
Osteoarthritis , Point-of-Care Testing , Humans , Molecular Diagnostic Techniques , Limit of Detection , Nucleic Acid Amplification Techniques/methods , Osteoarthritis/diagnosis , Biomarkers , Phenolphthaleins , Sensitivity and Specificity
5.
J Food Sci ; 88(2): 772-783, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36633256

ABSTRACT

Free myo-inositol is a bioavailable form of a cyclitol having various health-promoting activities. The impact of cultivar and home-cooking practice on the content of free myo-inositol in sweet potatoes (12 cultivars grown in 2 different locations) was studied. A GC-MS/MS method following in situ trimethylsilylation was established and validated to determine free myo-inositol. The established analytical method was sensitive, precise, and accurate. It was found that free myo-inositol content in sweet potato varied greatly (sevenfolds) with cultivar, ranging from 377.1 to 2628.3 mg/kg dw. A cultivar Poongwon-mi was found to be an exceptionally rich source of free myo-inositol (2628.3 mg/kg dw). Home-cooking practice markedly increased free myo-inositol content (maximum 240%). Baking showed the highest impact on the increase in free myo-inositol, followed by steaming, microwave cooking, and boiling, in decreasing order. This represents the first report of the remarkably high impact of cultivar and home-cooking practice on the free myo-inositol content in sweet potato. PRACTICAL APPLICATION: The free myo-inositol content in sweet potato varied greatly with the cultivars. Poongwon-mi contained a surprisingly high content of free myo-inositol. Home-cooking dramatically increased the free myo-inositol content.


Subject(s)
Cyclitols , Ipomoea batatas , Tandem Mass Spectrometry , Cooking/methods , Inositol
6.
Life (Basel) ; 12(11)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36362837

ABSTRACT

Hepatocyte nuclear factor 4 alpha (HNF4α) is a key master transcriptional factor for hepatic fat and bile acid metabolic pathways. We aimed to investigate the role of HNF4α in non-alcoholic fatty liver disease (NAFLD). The role of HNF4α was evaluated in free fatty acid-induced lipotoxicity and chenodeoxycholic acid (CDCA)-induced bile acid toxicity. Furthermore, the role of HNF4α was evaluated in a methionine choline deficiency (MCD)-diet-induced NAFLD model. The overexpression of HNF4α reduced intracellular lipid contents and attenuated palmitic acid (PA)-induced lipotoxicity. However, the protective effects of HNF4α were reversed when CDCA was used in a co-treatment with PA. HNF4α knockdown recovered cell death from bile acid toxicity. The inhibition of HNF4α decreased intrahepatic inflammation and the NAFLD activity score in the MCD model. Hepatic HNF4α inhibition can attenuate bile acid toxicity and be more effective as a therapeutic strategy in NAFLD patients; however, it is necessary to study the optimal timing of HNF4α inhibition.

7.
Int J Mol Sci ; 22(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34948119

ABSTRACT

Current clinical applications of mesenchymal stem cell therapy for osteoarthritis lack consistency because there are no established criteria for clinical processes. We aimed to systematically organize stem cell treatment methods by reviewing the literature. The treatment methods used in 27 clinical trials were examined and reviewed. The clinical processes were separated into seven categories: cell donor, cell source, cell preparation, delivery methods, lesion preparation, concomitant procedures, and evaluation. Stem cell donors were sub-classified as autologous and allogeneic, and stem cell sources included bone marrow, adipose tissue, peripheral blood, synovium, placenta, and umbilical cord. Mesenchymal stem cells can be prepared by the expansion or isolation process and attached directly to cartilage defects using matrices or injected into joints under arthroscopic observation. The lesion preparation category can be divided into three subcategories: chondroplasty, microfracture, and subchondral drilling. The concomitant procedure category describes adjuvant surgery, such as high tibial osteotomy. Classification codes were assigned for each subcategory to provide a useful and convenient method for organizing documents associated with stem cell treatment. This classification system will help researchers choose more unified treatment methods, which will facilitate the efficient comparison and verification of future clinical outcomes of stem cell therapy for osteoarthritis.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Osteoarthritis, Knee , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Humans , Knee Joint/metabolism , Knee Joint/pathology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/therapy
8.
J Craniofac Surg ; 31(5): 1483-1487, 2020.
Article in English | MEDLINE | ID: mdl-32502102

ABSTRACT

The present study is based on the concept of neuro-aging and how it may affect surrounding skin cells. It has been shown that many factors play a significant role in skin homeostasis by interfering with various cytokines, either through activation or inhibition. Granulocyte macrophage colony-stimulating factor (GM-CSF) is generally recognized as an inflammatory cytokine, and our previous study has shown its effects on neuronal senescence after ultraviolet (UV) irradiation of skin cells. Following our previous work, this study was performed to investigate the neuroprotective effects of a GM-CSF antagonist, and how it may play an essential role in mediating anti-senescence and anti-inflammatory effects in the keratinocyte/nerve aging model. When human blastoma cells (SH-SY5Y) were treated with 10 ng/ml of GM-CSF, the levels of regulatory RNAs associated with aging, such as matrix metalloproteinase-9 (MMP9), nuclear factor NF-kappa-B p50 subunit (NFKB), inducible nitric oxide synthase (iNOS), and interleukin 1 beta (IL-1ß) increased, whereas GM-CSF inhibition caused their expression to decrease. A decrease in the antioxidant, glutathione (GSH) was observed after SH-SY5Y cells were treated with GM-CSF. This study confirms that this GM-CSF antagonist may play an important role in neural senescence, where inhibition may be a new target in the skin/nerve aging model.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Neurons/drug effects , Skin/drug effects , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Interleukin-1beta/metabolism , Matrix Metalloproteinase 9/metabolism , NF-kappa B p50 Subunit/metabolism , Nerve Tissue/drug effects , Nerve Tissue/metabolism , Neurons/metabolism , Nitric Oxide Synthase Type II/metabolism , Skin/metabolism , Skin Aging/drug effects , Ultraviolet Rays
10.
J Clin Med ; 8(11)2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31731761

ABSTRACT

Exosome-like extracellular vesicles (ELVs) contain biomolecules that have potential as diagnostic biomarkers, such as proteins, micro-RNAs (miRNAs), and lipids. However, it is difficult to enrich ELVs consistently with high yield and purity from clinical samples, which hampers the development of ELV biomarkers. This is particularly true for miRNAs in protein-rich plasma. Hence, we modified ELV isolation protocols of three commercially available polymer-precipitation-based kits using proteinase K (PK) treatment to quantify ELV-associated miRNAs in human plasma. We compared the yield, purity, and characteristics of enriched plasma ELVs, and measured the relative quantity of three selected miRNAs (miR-30c, miR-126, and miR-192) in ELVs using six human plasma samples. Compared with the original protocols, we demonstrated that ELVs can be isolated with PK treatment with high purity (i.e., lack of non-exosomal proteins and homogeneous size of vesicles) and yield (i.e., abundancy of exosomal markers), which were dependent on kits. Using the kit with the highest purity and yield with PK treatment, we successfully quantified ELV miRNAs (levels of 45%-65% in total plasma) with acceptable variability. Collectively, ELV enrichment using the modified easy-to-use method appears suitable for the analysis of miRNAs, although its clinical applicability needs to be confirmed in larger clinical studies.

11.
Molecules ; 24(23)2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31775356

ABSTRACT

Alzheimer's disease (AD) is a progressive, neurodegenerative brain disorder associated with loss of memory and cognitive function. Beta-amyloid (Aß) aggregates, in particular, are known to be highly neurotoxic and lead to neurodegeneration. Therefore, blockade or reduction of Aß aggregation is a promising therapeutic approach in AD. We have previously reported an inhibitory effect of the methanol extract of Perilla frutescens (L.) Britton (Lamiaceae) and its hexane fraction on Aß aggregation. Here, the hexane fraction of P. frutescens was subjected to diverse column chromatography based on activity-guided isolation methodology. This approach identified five asarone derivatives including 2,3-dimethoxy-5-(1E)-1-propen-1-yl-phenol (1), ß-asarone (2), 3-(2,4,5-trimethoxyphenyl)-(2E)-2-propen-1-ol (3), asaronealdehyde (4), and α-asarone (5). All five asarone derivatives efficiently reduced the aggregation of Aß and disaggregated preformed Aß aggregates in a dose-dependent manner as determined by a Thioflavin T (ThT) fluorescence assay. Furthermore, asarone derivatives protected PC12 cells from Aß aggregate-induced toxicity by reducing the aggregation of Aß, and significantly reduced NO production from LPS-stimulated BV2 microglial cells. Taken together, these results suggest that asarone derivatives derived from P. frutescens are neuroprotective and have the prophylactic and therapeutic potential in AD.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Anisoles/chemistry , Protein Aggregation, Pathological/drug therapy , Allylbenzene Derivatives , Alzheimer Disease/pathology , Amyloid beta-Peptides/chemistry , Animals , Anisoles/isolation & purification , Humans , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , PC12 Cells , Perilla frutescens/chemistry , Plant Leaves/chemistry , Protein Aggregation, Pathological/pathology , Rats
12.
Phytomedicine ; 63: 153056, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31398661

ABSTRACT

BACKGROUND: T helper 17 (Th17) cells, which are differentiated from CD4+ T cells, drive inflammation, leading to autoimmune diseases such as psoriasis, rheumatoid arthritis, and inflammatory bowel disease. Therefore, inhibiting Th17 polarization could be a therapeutic target for inflammatory diseases. PURPOSE: We investigated the inhibitory effect of Fraxinus rhynchophylla (Oleaceae) on Th17 differentiation and found its active component. STUDY DESIGN: The activity of F. rhynchophylla and its active constituent was verified using CD4+ cells extracted from C57BL/6 mice. METHODS: Micro-environment for Th17 polarization was provided to CD4+ cells and the effect of treatment with samples was measured by enzyme linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and Western blot. RESULTS: The extract of F. rhynchophylla Hance and its chemical constituent, α-amyrin acetate, which was isolated via bioassay-guided isolation, significantly inhibited Th17 polarization as revealed when interleukin (IL)-17, a characteristic cytokine produced by Th17 cells, was measured. Furthermore, the inhibitory effect of α-amyrin acetate was compared to the amyrin derivatives, α-amyrin and ß-amyrin. All displayed a suppressive effect on Th17 polarization and all reduced the expression of single transducer and activator of transcription 3 (STAT3) and retinoic acid receptor-related orphan receptor γt (RORγt), which are crucial transcription factors regulating Th17 differentiation. α-Amyrin acetate, however, exhibited the most prominent effects, which indicates that the functional group, acetate, might strengthen the inhibitory effect on Th17 differentiation. CONCLUSION: Taken together, these results suggest that the extract of F. rhynchophylla and its active constituent, α-amyrin acetate, could be applied as a potential therapeutic agent for autoimmune disorders such as rheumatoid arthritis.


Subject(s)
Fraxinus/chemistry , Oleanolic Acid/analogs & derivatives , Plant Extracts/pharmacology , Th17 Cells/drug effects , Animals , CD4-Positive T-Lymphocytes/drug effects , Cell Differentiation/drug effects , Cell Polarity/drug effects , Cell Polarity/immunology , Interleukin-17/genetics , Interleukin-17/metabolism , Male , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Oleanolic Acid/isolation & purification , Oleanolic Acid/pharmacology , Plant Extracts/chemistry , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
13.
J Craniofac Surg ; 30(3): 947-954, 2019.
Article in English | MEDLINE | ID: mdl-30817541

ABSTRACT

Although therapies with human amnion/chorion are used to ameliorate acute and chronic wounds, it is unclear which component of the amnion/chorion tissue promotes wound healing. To characterize the comparative effects of amnion and chorion in wound healing, we used human adipose-derived stromal cells to assess cell viability, migration, and gel contraction after treatment with amnion membrane extract (AME) or chorion membrane extract (CME). We then correlated the possible effectors via AME and CME protein profiling, and compared them by enzyme-linked immunosorbent assay (ELISA), western blotting, and immunocytochemistry. Cell viability was significantly increased with 50 and 100 µg/mL AME treatment, but with CME treatment, a significant increase was only observed with 100 µg/mL. With CME treatment, cell migration was 2.22-fold greater than the control, and collagen gels showed 20% greater contraction. Compared to control, the expression levels of α-smooth muscle actin (SMA) and smooth muscle protein 22-alpha (SM22α) increased both with AME and CME treatments, whereas calponin expression decreased. Protein profiling revealed significantly higher tissue inhibitor of metalloproteinase-1 (TIMP-1), interleukin-8, exotoxin, and adiponectin levels in CME than in AME, and ELISA revealed 8-fold higher adiponectin levels in cells treated with CME than those treated with AME. Immunocytochemistry revealed that α-SMA, SM22α, and calponin were significantly higher in CME- than AME-treated cells; however, adiponectin treatment did not enhance α-SMA, SM22α, or calponin expression. In conclusion, amnion and chorion membrane extracts exerted differential effects on proliferation and contraction of human adipose-derived stromal cells. Amnion extract was superior at inducing cell proliferation and migration, whereas CME was superior at inducing cell contraction.


Subject(s)
Amnion/metabolism , Chorion/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/physiology , Wound Healing/drug effects , Actins/metabolism , Adipose Tissue/cytology , Calcium-Binding Proteins/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Humans , Interleukin-8/metabolism , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Calponins
14.
J Craniofac Surg ; 30(3): 930-935, 2019.
Article in English | MEDLINE | ID: mdl-30807472

ABSTRACT

Ultraviolet (UV) irradiation affects neuronal structures of the skin and accelerates skin aging. Cytokine cascades in keratinocytes after UV irradiation may result in a paracrine inhibitory effect on nerve cells. The purpose of the present study was to determine the direct effect of cytokines induced by UV radiation on nerve cells in terms of neuronal senescence. Our group performed a preliminary study to determine cytokines induced in UV-irradiated keratinocytes. Among 40 cytokines studied, granulocyte-macrophage colony-stimulating factor (GM-CSF) was increased 4-fold in inflammation antibody array. The GM-CSF was added to cultured human neuroblastoma cells. To evaluate the effect of cellular senescence, the authors performed real-time polymerase chain reaction (RT-PCR), western blot, immunocytochemical, and phase-contrast microscopic evaluations. Expression levels of matrix metallopeptidase-9 (MMP-9), nuclear factor kappa-light-chain-enhancer of activated B cells 1 (NF-κB1), inducible nitric oxide synthase (iNOS), and interleukin ß1 (IL-ß1) were assessed by RT-PCR. Expression levels of AAP and beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) related to formation of beta-amyloid were evaluated by western blot analysis. Expression levels of MMP-9, NF-κB1, iNOS, and IL-ß1 after treatment with GM-CSF were significantly higher than those in the control group. Enhanced expression of AAP and BACE1 was also observed in the treatment group. Thus, GM-CSF might have a provocative effect on nerve cells in terms of neuronal senescence.


Subject(s)
Cellular Senescence/drug effects , Gene Expression/drug effects , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Neurons/drug effects , Skin/radiation effects , Amyloid Precursor Protein Secretases/metabolism , Antibodies , Aspartic Acid Endopeptidases/metabolism , Cell Line, Tumor , Cellular Senescence/radiation effects , Cytokines , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Interleukin-1beta/genetics , Matrix Metalloproteinase 9/genetics , NF-kappa B p50 Subunit/genetics , Nitric Oxide Synthase Type II/genetics , Skin/innervation , Skin Aging/drug effects , Ultraviolet Rays
15.
J Craniofac Surg ; 30(1): 270-275, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30444781

ABSTRACT

Aging is a biologic process characterized by time-dependent functional declines that are influenced by oxidative stress-induced inflammatory reactions. In particular, ultraviolet (UV) irradiation plays a key role in cellular senescence in photo-aged skin. However, the cellular senescence of epidermal keratinocytes and dermal fibroblasts by UV irradiation may differ depending on the exposure time and dosage of UV irradiation. Therefore, the purpose of the study was to evaluate and compare the effects of UV irradiation on cellular senescence in human epidermal keratinocytes (HaCaT) and human dermal fibroblasts (HDFs). After cell viability test, 200 mJ/cm UV irradiation was used in this study. To evaluate the reactive oxygen species and reactive nitrogen species production, the levels of glutathione (GSH) and nitrite (NO2) were measured. We also performed reverse transcription-polymerase chain reaction, Western blot analysis, and senescence-associated beta-galactosidase assay. An overall decrease in GSH and an increase in NO2 were observed in the HaCaT and HDF cells. However, the time-line and dose-dependent effects varied. Higher expressions of tumor necrosis factor-α, inducible nitric oxide synthase, and interleukin-1ß than that of the control group were observed in both cells. The HDF cells showed high levels of matrix metallopeptidase 9 and neutral endopeptidase protein but low levels of SIRT1 and procollagen I. The expression of nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) was increased in the HaCaT cells, but not in the HDF cells. The NF-κB peaked at 1 hour after UV irradiation in the HaCaT cells. The "turning-on" signal was faster in the irradiated HaCaT cells.


Subject(s)
Keratinocytes/radiation effects , Skin Aging/radiation effects , Ultraviolet Rays , Cells, Cultured , Cellular Senescence , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/radiation effects , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Nitric Oxide Synthase Type II/metabolism , Reactive Oxygen Species/metabolism
16.
Oncotarget ; 9(26): 17980-17993, 2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29719584

ABSTRACT

The intestine is a high cellular turnover tissue largely dependent on the regenerative function of stem cell throughout life, and a signaling center for the health and viability of organisms. Therefore, better understanding of the mechanisms underlying the regulation of intestinal stem cell (ISC) regenerative potential is essential for the possible intervention of aging process and age-related diseases. Drosophila midgut is a well-established model system for studying the mechanisms underlying ISC regenerative potential during aging. Here, we report the requirement of Drosophila phosphatidylethanolamine binding protein 1 (PEBP1) in ISC regenerative potential. We showed that PEBP1 was strongly expressed in enterocytes (ECs) of guts and its decrease with age and oxidative stress. Furthermore, the downregulation of PEBP1 in ECs accelerates ISC aging, as evidenced by ISC hyper-proliferation, γH2AX accumulation, and centrosome amplification, and intestinal hyperplasia. The decrease in PEBP1 expression was associated with increased extracellular signal-regulated kinase (ERK) activity in ECs. All these phenotypes by EC-specific depletion of PEBP1 were rescued by the concomitant inhibition of ERK signaling. Our findings evidence that the age-related downregulation of PEBP1 in ECs is a novel cause accelerating ISC aging and that PEBP1 is an EC-intrinsic suppressor of epidermal growth factor receptor (EGFR)/ERK signaling. Our study provides molecular insights into the tight regulation of EGFR/ERK signaling in niches for stem cell regenerative potential.

17.
Pharmacogn Mag ; 13(52): 535-541, 2017.
Article in English | MEDLINE | ID: mdl-29200710

ABSTRACT

BACKGROUND: Limonium tetragonum, a naturally salt-tolerant halophyte, has been studied recently and is of much interest to researchers due to its potent antioxidant and hepatoprotective activities. OBJECTIVE: In the present study, we attempted to elucidate bioactive compounds from ethyl acetate (EtOAc) soluble fraction of L. tetragonum extract. Furthermore, the simultaneous analysis method of bioactive EtOAc fraction of L. tetragonum has been developed using high-performance liquid chromatography (HPLC). MATERIALS AND METHODS: Thirteen compounds have been successfully isolated from EtOAc fraction of L. tetragonum, and the structures of 1-13 were elucidated by extensive one-dimensional and two-dimensional spectroscopic methods including 1H-NMR, 13C-NMR, 1H-1H COSY, heteronuclear single quantum coherence, heteronuclear multiple bond correlation, and nuclear Overhauser effect spectroscopy. Hepatoprotection of the isolated compounds against liver fibrosis was evaluated by measuring inhibition on hepatic stellate cells (HSCs) undergoing proliferation. RESULTS: Compounds 1-13 were identified as gallincin (1), apigenin-3-O-ß-D-galactopyranoside (2), quercetin (3), quercetin-3-O-ß-D-galactopyranoside (4), (-)-epigallocatechin (5), (-)-epigallocatechin-3-gallate (6), (-)-epigallocatechin-3-(3″-O-methyl) gallate (7), myricetin-3-O-ß-D-galactopyranoside (8), myricetin-3-O-(6″-O-galloyl)-ß-D-galactopyranoside (9), myricetin-3-O-α-L-rhamnopyranoside (10), myricetin-3-O-(2″-O-galloyl)-α-L-rhamnopyranoside (11), myricetin-3-O-(3″-O-galloyl)-α-L-rhamnopyranoside (12), and myricetin-3-O-α-L-arabinopyranoside (13), respectively. All compounds except for 4, 8, and 10 are reported for the first time from this plant. CONCLUSION: Myricetin glycosides which possess galloyl substituent (9, 11, and 12) showed most potent inhibitory effects on the proliferation of HSCs. SUMMARY: In the present study, we have successfully isolated 13 compounds from bioactive fraction of Limonium tetragonum. The structures of compounds isolated have been fully elucidated, and hepatoprotective activities of compounds against liver fibrosis were evaluated by measuring inhibition on hepatic stellate cells undergoing proliferation. Furthermore, the simultaneous analysis method of bioactive ethyl acetate fraction of L. tetragonum has been developed using HPLC. Ten compounds identified herein are reported for the first time from this plant.Abbreviations used: HSQC: Heteronuclear single quantum coherence; HMBC: Heteronuclear multiple bond correlation; NOESY: Nuclear Overhauser effect spectroscopy; EGCG: Epigallocatechin-3-gallate; EGC: Epigallocatechin; HSC: Hepatic stellate cell; MTT: 3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide.

18.
Exp Cell Res ; 355(2): 67-82, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28377320

ABSTRACT

BACKGROUND: Capsular contracture is an incurable complication after silicone-based implant surgery. Myofibroblast is the predominant cell in the contracted capsule. We hypothesized that human adipose derive stromal cells (hASCs) together with fibroblast may show a similar phenotypic characteristics of myofibroblast after the treatment of inflammatory cytokines in vitro. MATERIALS AND METHODS: Interleukin 3 (IL-3) and granulocyte macrophage colony stimulating factor (GM-CSF) were treated in the culture of hASCs and HDFs. Lyn peptide inhibitor was applied as an inhibitor. The changes of cell surface markers (CD105, CD73, CD34, CD45, CD31, CD325 and CD146) were assessed. The expression of various cytokines related to wound contraction were tested such as TGF-ß, α-SMA, HGF, FGF, ENT-1, and TSP-1. Myo-D, α-SMA, and glial fibrillary acidic protein (GFAP) were evaluated by blotting and immunocytochemical staining. The collagen-gel contraction assay was performed for the functional contraction of myofibroblastic phenotype. RESULTS: The expression of α-SMA, Myo-D and GFAP after the treatment of IL-3/GM-CSF showed similar results in hASCs and HDFs. Enhanced expression of TGF- ß was observed in HDFs and the increase of ENT-1 and TSP-1 was significant in hASCs. Collagen-gel with HDFs contracted significantly within 24h after the treatment of IL-3/GM-CSF, and the contraction was inhibited by Lyn peptide inhibitor. But in hASCs, the gel-contraction was not significant. CONCLUSION: IL-3/ GM-CSF effected on the myofibroblastic differentiation of hASCs as well as it did on HDFs. But hASCs did not show the phenotypic gel-contraction within 24h.


Subject(s)
Adipose Tissue/cytology , Cell Differentiation , Fibroblasts/cytology , Fibroblasts/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interleukin-3/metabolism , Stromal Cells/cytology , Humans , Stromal Cells/metabolism
19.
J Chromatogr A ; 1457: 88-96, 2016 Jul 29.
Article in English | MEDLINE | ID: mdl-27363735

ABSTRACT

Exenatide is a synthetic version of the 39-mer peptide of Exendin-4, which is an FDA-approved therapeutic against Type II diabetes mellitus. However, exenatide has a very short in-serum half-life and PEGylation have been performed to improve its in-serum stability. PEGylation often yields multivalent binding to non-specific residues, and the desired species should be carefully separated by chromatographies. In this study, we first devised an aqueous-phase, two-step PEGylation process. This consists of thiolation of Lys 12 and 27 residues followed by attachment of PEG-maleimide (10kD) to thiol groups. This process yields various species: mono-PEGylates with positional isomers, di-PEGylate, and other higher MW substances. A prep-grade cationic exchange chromatography (HiTrap SP) at pH 3.0 partially separated mono- and di-PEGylates based on the molar ratio of conjugated PEG and peptide and thus molecular weight of the conjugates. To further investigate the chromatographic separation of positional isomers of mono-PEGylates, we prepared two kinds of exenatide analogs by point mutation; K12C and K27C. Each analog was mono-PEGylated with very high yield (>95%). When a mixture of the two positional isomers of mono-PEGylates was applied to HiTrap SP chromatography, K12C-PEGylate and K27C-PEGylate eluted separately at 0.22M and 0.33M NaCl, respectively. When the proportions of acid and its conjugate base of the amino acid residues adjacent to the PEGylation site at pH 3.0 were analyzed, K27C-PEGylate shows stronger positive charge than K12C-PEGylate, and we propose the residence time difference between the two mono-PEGylates could be due to the charge difference. ELISA result shows that the immuno-binding activity of both analogs and their mono-PEGylates are well maintained. Furthermore, both mono-PEGylates of the analogs show higher than 50-fold improved anti-trypsin stability. We expect that mono-PEGylates of the exenatide analogs are alternatives to the conventional C40-PEG.


Subject(s)
Hypoglycemic Agents/isolation & purification , Peptides/isolation & purification , Polyethylene Glycols/chemistry , Venoms/isolation & purification , Chromatography, Ion Exchange/methods , Exenatide , Hypoglycemic Agents/chemistry , Isomerism , Molecular Weight , Peptides/chemistry , Venoms/chemistry
20.
Colloids Surf B Biointerfaces ; 136: 786-90, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26529386

ABSTRACT

Liposome is one of the frequently used carriers for active targeting systems in vivo. Such parameters as its size, surface charge, and surface modifiers are known to influence the liposome uptake by macrophage cells. In this study, we investigated the effects of liposome size and polyethylene glycol (PEG) surface modifier on the liposomal internalization to murine macrophage (RAW-264.7), by using an imaging analysis technique. Three different sized liposomes (100, 200, and 400 nm in nominal diameter) labeled with rhodamine fluorescence were used. Liposome internalization appeared to reach a pseudo-steady plateau in about 5h incubation, and most of the internalized liposomes were seen to accumulate in the cytosol including cellular extensions. The maximum fluorescent density from the internalized liposomes was similar between 100 nm and 200 nm liposomes. However, that of the larger 400 nm liposome was approximately 1.7 times higher than the others, confirming the previous report that the larger the liposomes are the higher the degree of internalization is. When the outside of the 200 nm liposomes was modified with biocompatible anchor molecule (BAM) consisting of PEG (ca. 2kD molecular weight) moiety, the endocytosis was indeed reduced by about 2.1-fold, despite the increase of the hydrodynamic size due to BAM conjugation. This fluorescence-based cellular imaging analysis can be used to quantitatively monitor and optimize cellular internalization systems.


Subject(s)
Endocytosis , Liposomes , Macrophages/metabolism , Polyethylene Glycols/chemistry , Animals , Cell Line , Mice , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...