Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 660
Filter
1.
Small ; : e2404223, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082408

ABSTRACT

This study demonstrates the developments of self-assembled optical metasurfaces to overcome inherent limitations in polarization density (P) and high refractive indices (n) within naturally occurring materials. The Maxwellian macroscopic description establishes a link between P and n, revealing a static limit in natural materials, restricting n to ≈4.0 at optical frequencies. Previously, it is accepted that self-assembly enables the creation of nanogaps between metallic nanoparticles (NPs), boosting capacitive enhancement of P and resultant exceptionally high n at optical frequencies. The work focuses on assembling gold (Au) NPs into a closely packed monolayer by rationally designing the polymeric ligand to balance attractive and repulsive forces, in that polymeric brush-mediated self-assembly of the close-packed Au NP monolayer is robustly achieved over a large-area. The resulting monolayer of Au nanospheres (NSs), nanooctahedras (NOs), and nanocubes (NCs) exhibits high macroscopic integrity and crystallinity, sufficiently enough for pushing n to record-high regimes. The systematic comparisons between each differently shaped Au NP monolayers elucidate the significance of capacitive coupling in achieving an unnaturally high n. The achieved n of 10.12 at optical frequencies stands as a benchmark, highlighting the potential of polyhedral Au NPs in advancing optical metasurfaces.

2.
Chemosphere ; 363: 142892, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025313

ABSTRACT

Thermosetting polymers are used in a wide range of applications due to their robust mechanical strength and superior flame retardancy. Despite these technical benefits, recycling of thermosetting polymers has been challenging because of their crosslinking nature. Moreover, their disposal through conventional methods (landfill and combustion) poses environmental concerns, such as microplastics and air pollutants. To address these issues, this study introduces a thermo-chemical disposal platform for thermosetting polymer wastes that employs carbon dioxide (CO2) as a reactive medium. In this work, melamine-formaldehyde was used as model compound of thermosetting polymers. In single-stage pyrolysis, it was revealed that CO2 plays a crucial role in controlling in the compositional matrices of pyrolytic gases, liquid products, and wax. These compositional changes were attributed to the homogeneous reactions between CO2 and the volatile compounds released from the thermolysis of MF. To enhance the thermal cracking of the MF, a double-stage pyrolysis process was tested, which increased the production of pyrolytic gases and eliminated wax formation. However, the slow kinetics governing the reactivity of CO2 limits the occurrence of homogeneous reactions. A nickel-based catalyst was used to accelerate reaction kinetics. The catalytic pyrolysis under CO2 conditions led to substantial increases in syngas (H2 and CO) production of 880% and 460%, respectively, compared with double-stage pyrolysis. These findings demonstrate that thermosetting polymer wastes can be valorized into gaseous fuels through thermo-chemical process, and CO2 enhances the recovery of energy and chemicals. Therefore, this study presents an innovative technical platform to convert thermosetting polymer wastes and CO2 into syngas.

3.
Bioresour Technol ; 407: 131124, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39025370

ABSTRACT

In this study, magnetic biochar was synthesized by doping Fe3O4 onto the biochar surface followed by analysis of its properties. The efficiency of methylene blue (MB) removal through the combined processes of adsorption and photolysis was assessed. The presence of Fe3O4 on the biochar surface was confirmed using Raman spectroscopy and X-ray photoelectron spectroscopy. The magnetic biochar, after MB adsorption, showed a magnetism of 39.50 emu/g leading to a 97.07 % recovery rate. The specific surface area of biochar was higher (380.68 m2/g) than that of magnetic biochar (234.46 m2/g), and the maximum adsorption capacity of MB was higher in the biochar (0.03 mg/g) than that in magnetic biochar (0.02 mg/g) under the optimal conditions for MB adsorption. The MB adsorption experiments using biochar or magnetic biochar were optimally conducted under 10-20 mg/L MB concentration, 1 g biochar dosage, pH 12, 200 rpm rotation speed, 25 °C temperature, and 30 min duration. Under dark conditions, biochar had a higher MB removal rate, at 83.91 %, compared to magnetic biochar, at 78.30 %. Under visible light (λ > 425 nm), magnetic biochar effectively removed MB within 10 min, highlighting the synergistic effect of adsorption and photolysis. MB is physically and chemically adsorbed by the monolayer on the surface of EB and EMB according to adsorption behavior.

4.
Research (Wash D C) ; 7: 0326, 2024.
Article in English | MEDLINE | ID: mdl-39050819

ABSTRACT

Resistin plays an important role in the pathophysiology of obesity-mediated insulin resistance in mice. However, the biology of resistin in humans is quite different from that in rodents. Therefore, the association between resistin and insulin resistance remains unclear in humans. Here, we tested whether and how the endocannabinoid system (ECS) control circulating peripheral blood mononuclear cells (PBMCs) that produce resistin and infiltrate into the adipose tissue, heart, skeletal muscle, and liver, resulting in inflammation and insulin resistance. Using human PBMCs, we investigate whether the ECS is connected to human resistin. To test whether the ECS regulates inflammation and insulin resistance in vivo, we used 2 animal models such as "humanized" nonobese diabetic/Shi-severe combined immunodeficient interleukin-2Rγ (null) (NOG) mice and "humanized" resistin mouse models, which mimic human body. In human atheromatous plaques, cannabinoid 1 receptor (CB1R)-positive macrophage was colocalized with the resistin expression. In addition, resistin was exclusively expressed in the sorted CB1R-positive cells from human PBMCs. In CB1R-positive cells, endocannabinoid ligands induced resistin expression via the p38-Sp1 pathway. In both mouse models, a high-fat diet increased the accumulation of endocannabinoid ligands in adipose tissue, which recruited the CB1R-positive cells that secrete resistin, leading to adipose tissue inflammation and insulin resistance. This phenomenon was suppressed by CB1R blockade or in resistin knockout mice. Interestingly, this process was accompanied by mitochondrial change that was induced by resistin treatment. These results provide important insights into the ECS-resistin axis, leading to the development of metabolic diseases. Therefore, the regulation of resistin via the CB1R could be a potential therapeutic strategy for cardiometabolic diseases.

5.
Eur J Pharmacol ; 979: 176826, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033840

ABSTRACT

Allergic asthma is a major health burden on society as a chronic respiratory disease characterized by inflammation and muscle tightening around the airways in response to inhaled allergens. Daphne kiusiana Miquel is a medicinal plant that can suppress allergic airway inflammation; however, its specific molecular mechanisms of action are unclear. In this study, we aimed to elucidate the mechanisms by which D. kiusiana inhibits allergic airway inflammation. We evaluated the anti-inflammatory effects of the ethyl acetate (EA) fraction of D. kiusiana and its major compound, daphnetin, on murine T lymphocyte EL4 cells stimulated with phorbol 12-myristate 13-acetate and ionomycin in vitro and on asthmatic mice stimulated with ovalbumin in vivo. The EA fraction and daphnetin inhibited T-helper type 2 (Th2) cytokine secretion, serum immunoglobulin E production, mucus secretion, and inflammatory cell recruitment in vivo. In vitro, daphnetin suppressed intracellular Ca2+ mobilization (a critical regulator of nuclear factor of activated T cells) and functions of the activator protein 1 transcription factor to reduce interleukin (IL)-4 and IL-13 expression. Daphnetin effectively suppressed the IL-4/-13-induced activation of Janus kinase (JAK)/signal transducer and activator of transcription 6 (STAT6) signaling in vitro and in vivo, thereby inhibiting the expression of GATA3 and PDEF, two STAT6-target genes responsible for producing Th2 cytokines and mucins. These findings indicate that daphnetin suppresses allergic airway inflammation by stabilizing intracellular Ca2+ levels and subsequently inactivating the JAK/STAT6/GATA3/PDEF pathway, suggesting that daphnetin is a promising alternative to existing asthma treatments.

6.
Technol Health Care ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38968066

ABSTRACT

BACKGROUND: Delayed onset muscle soreness (DOMS) is one of the most prevalent musculoskeletal symptoms in individuals engaged in strenuous exercise programs. OBJECTIVE: This study investigated the effects of wearable low-intensity continuous ultrasound on muscle biomechanical properties during DOMS. METHODS: Twenty volunteers were distributed into a wearable ultrasound stimulation group (WUG) (n= 10) and medical ultrasound stimulation group (MUG) (n= 10). All subjects performed wrist extensor muscle strength exercises to induce DOMS. At the site of pain, ultrasound of frequency 3 MHz was applied for 1 h or 5 min in each subject of the WUG or MUG, respectively. Before and after ultrasound stimulation, muscle biomechanical properties (tone, stiffness, elasticity, stress relaxation time, and creep) and body temperature were measured, and pain was evaluated. RESULTS: A significant decrease was found in the tone, stiffness, stress relaxation time, and creep in both groups after ultrasound stimulation (all p< 0.05). A significant decrease in the pain and increases in temperature were observed in both groups (all p< 0.05). No significant differences were observed between the groups in most evaluations. CONCLUSION: The stiffness and pain caused by DOMS were alleviated using a wearable ultrasound stimulator. Furthermore, the effects of the wearable ultrasound stimulator were like those of a medical ultrasound stimulator.

7.
Materials (Basel) ; 17(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38998276

ABSTRACT

This study investigates the surface plasmon resonance (SPR)-induced UV photoresponse of zinc oxide (ZnO) derived from zeolitic imidazolate framework-8 (ZIF-8) to assess the influence of silver nanoparticles (Ag NPs) on the photoresponse behavior of metal-organic framework (MOF)-derived ZnO. The initial synthesis involved a thermal treatment in air to convert ZIF-8 into ZnO. We noted enhanced optical absorption both in the UV and visible spectra with the deposition of Ag NPs onto the ZIF-8-derived ZnO. Additionally, the presence of Ag NPs in the ZnO resulted in a substantial increase in current, even without any light exposure. This increase is attributed to the transfer of electrons from the Ag NPs to the ZnO. Photocurrent measurements under UV illumination revealed that the photocurrent with Ag NPs was significantly higher-by two orders of magnitude-compared with that without Ag NPs. This demonstrates that SPR-induced absorption markedly boosted the photocurrent, although the current rise and decay time constants remained comparable to those observed with ZnO alone. Although Ag NPs contribute electrons to ZnO, creating a "pre-doping" effect that heightens baseline conductivity (even in the absence of light), this does not necessarily alter the recombination dynamics of the photogenerated carriers, as indicated by the similar rise and decay time constants. The electron transfer from Ag to ZnO increases the density of charge carriers but does not significantly influence their recombination.

8.
Biosensors (Basel) ; 14(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38920566

ABSTRACT

Disposable sensors are inexpensive, user-friendly sensing tools designed for rapid single-point measurements of a target. Disposable sensors have become more and more essential as diagnostic tools due to the growing demand for quick, easy-to-access, and reliable information related to the target. Dopamine (DA), a prevalent catecholamine neurotransmitter in the human brain, is associated with central nervous system activities and directly promotes neuronal communication. For the sensitive and selective estimation of DA, an enzyme-free amperometric sensor based on polyaniline-doped multi-walled carbon nanotubes (PANI-MWCNTs) drop-coated disposable screen-printed carbon electrodes (SPCEs) was fabricated. This PANI-MWCNTs-2/SPCE sensor boasts exceptional accuracy and sensitivity when working directly with ex vivo mouse brain homogenates. The sensor exhibited a detection limit of 0.05 µM (S/N = 3), and a wide linear range from 1.0 to 200 µM. The sensor's high selectivity to DA amidst other endogenous interferents was recognized. Since the constructed sensor is enzyme-free yet biocompatible, it exhibited high stability in DA detection using ex vivo mouse brain homogenates extracted from both Parkinson's disease and control mice models. This research thus presents new insights into understanding DA release dynamics at the tissue level in both of these models.


Subject(s)
Aniline Compounds , Biosensing Techniques , Brain , Dopamine , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Animals , Dopamine/analysis , Dopamine/metabolism , Mice , Aniline Compounds/chemistry , Brain/metabolism , Electrodes , Electrochemical Techniques , Humans
9.
J Hazard Mater ; 476: 134916, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38909465

ABSTRACT

Plastic-based insulation materials have been widely employed owing to their exceptional durability, cost-effectiveness, low weight, and low thermal conductivity. Nevertheless, the disposal of the insulation material waste (IMW) within construction waste and its recycling and recovery are challenging. Meanwhile, landfilling or incineration methods can release toxic chemicals into the environment. Consequently, the accumulation of IMW in construction waste has become a pressing environmental concern. To address this issue, this paper proposes a pyrolysis platform as a disposal management method for IMW that employs CO2 as a reactive medium. IMW composed of polystyrene in the form of extruded polystyrene underwent pyrolysis to yield pyrogenic products containing toxic chemicals. These toxic chemicals were subsequently transformed into syngas via homogeneous reactions with CO2 under certain thermal conditions and Ni/Al2O3 catalyst. This resulted in a significant reduction in the total peak areas of toxic substances in the pyrogenic oil compared with that obtained using N2 as a medium. Furthermore, the efficacy of CO2 was demonstrated to increase with an increase in the atmospheric concentration. This study implied that catalytic pyrolysis under CO2 conditions is a potential platform for converting toxic chemicals from IMW into syngas through homogeneous reactions with CO2.

10.
Ann Surg ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38887930

ABSTRACT

OBJECTIVE: To assess the utility of tumor-intrinsic and cancer-associated fibroblast (CAF) subtypes of pancreatic ductal adenocarcinoma (PDAC) in predicting response to neoadjuvant therapy (NAT) and overall survival. BACKGROUND: PDAC remains a deadly disease with limited treatment options, and both the tumor as well as the microenvironment play an important role in pathogenesis. Gene expression-based tumor-intrinsic subtypes (classical and basal-like) have been shown to predict outcomes, but tumor microenvironment subtypes are still evolving. METHODS: RNA-sequencing was performed on 114 deidentified resected PDAC tumors. Clinical data were collected by retrospective chart review. Single sample classifiers (SSCs) were used to determine classical and basal-like subtypes as well as tumor-permissive permCAF and tumor-restraining restCAF subtypes. Survival was analyzed using log-rank test. RESULTS: Patients who received NAT had an increase in overall survival (OS), with median survival of 27.9 months compared to 20.1 months for those who did not receive NAT, but the difference did not reach statistical significance (HR 0.64, P=0.076). Either tumor-intrinsic or CAF subtypes alone were associated with OS regardless of NAT or no NAT, and patients with classical or restCAF subtype had the best outcomes. When evaluated together, patients with classical-restCAF subtype had the best OS and basal-permCAF the worst OS (P<0.0001). NAT patients with classical-restCAF subtype demonstrated the longest OS compared to the other groups (P=0.00041). CONCLUSIONS: CAF subtypes have an additive effect over tumor-intrinsic subtypes in predicting survival with or without neoadjuvant FOLFIRINOX in PDAC. Molecular subtyping of both tumor and CAF compartments of PDAC may be important steps in selecting first-line systemic therapy.

11.
Psychiatry Res ; 339: 115992, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38875919

ABSTRACT

Recent research highlights the crucial role of the gut-brain axis in understanding depression etiologies. While burgeoning studies suggest an association between disruptions in gut microbiota and the development of depression, limited longitudinal studies have investigated this link. To address this gap, we conducted a retrospective cohort study using National Health Insurance Service-Health Screening Cohort (NHIS-HEALS) data in South Korea, involving 199,144 individuals aged 40-79. We examined the impact of cumulative antibiotic exposure (2004-2008) on subsequent depression incidence (2009-2013) by conducting Cox proportional hazards regressions. Our findings show an increasing depression risk with extended antibiotic exposure after adjusting for comorbidities and behavioral covariates. A broader antibiotic spectrum was associated with a higher depression risk. These trends persisted after adjusting for the original antibiotic indications. In conclusion, our study highlights the duration-dependent association between antibiotic exposure and increased depression risk, offering insights into depression etiologies and relevant novel therapeutic tools, and advocating for heightened antibiotic stewardship considering their impact on mental health.

12.
Sci Data ; 11(1): 566, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822001

ABSTRACT

Precipitation plays a crucial role in the global energy and water cycle and has important implications for food, water, and energy security. To enhance our understanding of the water cycle, it is invaluable to have a comprehensive historical record of precipitation. However, obtaining such records, especially for the period before the Industrial Revolution, can be challenging. During the Joseon Dynasty, Korea established a network for measuring rainfall and recorded this information in historical documents known as Seungjeongwon Ilgi and Ilseongnok. Recently, these documents have been digitized, providing us with daily precipitation data for Seoul spanning 130 years, from 1778 to 1907. By combining and analyzing these two documents, we were able to address inconsistencies found in previous studies and improve the quality of the data. Notably, this dataset is free of any missing values, making it the longest daily precipitation record in the world before the Industrial Revolution. Its availability to the public holds great potential for climate research in East Asia during the late Little Ice Age.

13.
BMC Public Health ; 24(1): 1412, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802817

ABSTRACT

BACKGROUND: Parental depression is a significant problem that negatively affects parents' welfare and influences family dynamics, children's academic and health behaviors, and mental health. However, there is limited evidence regarding the impact of the parental depression into the children's' psychological and physical wellbeing on Asian cultures. This study examined the psychological burdens and health behaviors of adolescent children with parents with depression in the Republic of Korea. METHODS: We conducted a cross-sectional study using data from the Korean National Health and Nutrition Examination Survey (KNHANES) spanning 2013 to 2021 to compare health behaviors and mental health outcomes between 203 adolescent children with parents diagnosed with depression and 3,856 control adolescents aged 12-19 years. RESULTS: Following multivariate adjustments, the risk of depressive mood for more than two weeks was significantly increased in boys with parental depression (adjusted Odds Ratio [aOR] = 2.05, 95% Confidence Interval [CI] = 1.91-3.52) and adolescents with parents with moderate-to-severe depression (aOR = 2.60, 95% CI = 1.17-5.77). Adolescents with parental depression reported significantly worse subjective health status (aOR = 1.88, 95% CI = 1.05-3.36) and higher stress levels (aOR = 1.91, 95% CI = 1.33-2.76). Additionally, when parental depression was present and the time since depression diagnosis was more than five years, adolescents with parental depression exhibited even poorer subjective health status and higher stress levels. CONCLUSIONS: The study found that adolescents whose parents experienced depression had poorer mental health than those whose parents did not have mental health issues. These findings emphasize the importance of providing support for the mental health of adolescents in families affected by parental depression.


Subject(s)
Depression , Health Behavior , Humans , Adolescent , Male , Female , Cross-Sectional Studies , Republic of Korea/epidemiology , Depression/epidemiology , Depression/psychology , Child , Young Adult , Child of Impaired Parents/psychology , Child of Impaired Parents/statistics & numerical data , Parents/psychology , Nutrition Surveys , Mental Health , Psychological Well-Being
14.
Curr Pharm Des ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38808709

ABSTRACT

Cancer remains a leading cause of death worldwide, and current cancer drugs often have high costs and undesirable side effects. Additionally, the development of drug resistance can reduce their effectiveness over time. Natural products have gained attention as potential sources for the treatment and prevention of various diseases. Curcumin, an extract from turmeric (Curcuma longa), is a natural phenolic compound with diverse pharmacological properties, including antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, antiprotozoal, antidiabetic, antivenom, antiulcer, anticarcinogenic, antimutagenic, anticoagulant, and antifertility activities. Given the increasing interest in curcumin for cancer prevention, this review aims to comprehensively examine clinical trials investigating the use of curcumin in different types of cancer. Additionally, effective techniques and approaches to enhance the bioavailability of curcumin are discussed and summarized. This review article provides insights into the properties of curcumin and its potential as a future anticancer drug.

15.
Stem Cell Res ; 77: 103426, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38678980

ABSTRACT

GATA6 is expressed during early embryogenesis and localizes to endoderm- and mesoderm-derived tissues during later embryogenesis. Here, we established a human induced pluripotent stem cell (hiPSC) line expressing EGFP under GATA6 gene. EGFP coding sequence was introduced into the C-terminus of GATA6 in KSCBi017-A hiPSCs through homologous recombination using CRISPR/Cas9 system. The successfully edited line, KSCBi017-A-1, was selected and confirmed by sequencing. The line had a normal karyotype and exhibited potential to differentiate into three germ layers while it expressed EGFP upon endoderm induction. KSCBi017-A-1 cells can be used to monitor the expression of GATA6 during differentiation. This cell line is available from Korea National Stem Cell Bank.


Subject(s)
CRISPR-Cas Systems , GATA6 Transcription Factor , Green Fluorescent Proteins , Induced Pluripotent Stem Cells , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Humans , GATA6 Transcription Factor/metabolism , GATA6 Transcription Factor/genetics , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Cell Line , Cell Differentiation
16.
Aging Cell ; : e14184, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687090

ABSTRACT

Cellular senescence contributes to inflammatory kidney disease via the secretion of inflammatory and profibrotic factors. Protease-activating receptor 2 (PAR2) is a key regulator of inflammation in kidney diseases. However, the relationship between PAR2 and cellular senescence in kidney disease has not yet been described. In this study, we found that PAR2-mediated metabolic changes in renal tubular epithelial cells induced cellular senescence and increased inflammatory responses. Using an aging and renal injury model, PAR2 expression was shown to be associated with cellular senescence. Under in vitro conditions in NRK52E cells, PAR2 activation induces tubular epithelial cell senescence and senescent cells showed defective fatty acid oxidation (FAO). Cpt1α inhibition showed similar senescent phenotype in the cells, implicating the important role of defective FAO in senescence. Finally, we subjected mice lacking PAR2 to aging and renal injury. PAR2-deficient kidneys are protected from adenine- and cisplatin-induced renal fibrosis and injury, respectively, by reducing senescence and inflammation. Moreover, kidneys lacking PAR2 exhibited reduced numbers of senescent cells and inflammation during aging. These findings offer fresh insights into the mechanisms underlying renal senescence and indicate that targeting PAR2 or FAO may be a promising therapeutic approach for managing kidney injury.

17.
RSC Adv ; 14(16): 11524-11532, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38601707

ABSTRACT

Graphene oxide quantum dots (GOQDs) are promising candidates for biomedical applications since they have lower toxicity and higher biocompatibility than traditional semiconductor quantum dots. However, oxygen functional groups such as epoxy and hydroxyl groups usually induce nonradiative relaxation, which leads to GOQDs exhibiting nonemissive properties. For the enhancement of the emission efficiency of GOQDs, the number of nonradiative relaxation sites should be reduced. This paper reports the synthesis of highly luminescent reduced GOQDs prepared by liquid-phase photoreduction (LPP-rGOQDs). First, GOQDs was fabricated from single-walled carbon nanotubes through chlorate-based oxidation and separation after acoustic cavitation. Subsequently, LPP-rGOQDs were obtained by liquid-phase photoreduction of the GOQD suspension under intense pulsed light irradiation. Liquid-phase photoreduction selectively reduced epoxy groups present on the basal plane of GOQDs, and hydrogenated the basal plane without removal of carbonyl and carboxyl groups at the edges of the GOQDs. Such selective removal of oxidative functional groups was used to control the reduction degree of GOQDs, closely related to their optical properties. The optimized LPP-rGOQDs were bright blue in color and showed quantum yields up to about 19.7%, which was 10 times the quantum yield of GOQDs. Furthermore, the LPP-rGOQDs were utilized to image a human embryonic kidney (HEK293A), and a low cytotoxicity level and satisfactory cell imaging performance were observed.

18.
Top Stroke Rehabil ; : 1-11, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598557

ABSTRACT

PURPOSE: The purposes of meta-analysis are to evaluate evidence about the effects of Rehabilitation Exercise Program on the balance of post-stroke patients, evaluated by the Berg Balance Scale (BBS). METHODS: The search was conducted 'stroke,' 'rehabilitation,' 'dynamic balance,' 'Berg Balance Scale,' 'exercise' and 'randomized controlled trial'using MEDLINE (accessed by PubMed), Web of Science (WoS), ProQuest, and Google Scholar for journal studies published from January 2018 to October 2022. Two independent reviewers performed the article selection, data extraction, and methodological quality assessment. The main outcome was dynamic balance assessed by the Berg Balance scale. RESULTS: The review included 30 papers and a total of 540 patients. The overall effect size was 0.550, a medium effect size according to the Cohen's standard. It was observed that gender has moderate effect size in male (0.551), female (0.458) and higher in male. Exercise type results showed large effect sizes in balance training (0.966), and aquatic activities (0.830), moderate effect sizes in virtual reality (0.762), moderate effect sizes in physically active (0.581), gait training (0.541), dual-task (0.478), trunk control (0.284), and small effect sizes in resistance training (0.128). CONCLUSIONS: Exercise programs are effective in improving dynamic balance in stroke patients. Especially, the meta-analysis showed higher Effect Size for balance training and virtual reality than for other programs making this relevant interventions for future head to head superiority studies that compare different balance interventions in stroke.

19.
Polymers (Basel) ; 16(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38611172

ABSTRACT

Gaskets and seals are essential components in the operation of proton exchange membrane (PEM) fuel cells and are required for keeping hydrogen and air/oxygen within their individual compartments. The durability of these gaskets and seals is necessary, as it influences not only the lifespan but also the electrochemical efficiency of the PEM fuel cell. In this study, the cause of silicon leaching from silicone gaskets under simulated fuel cell conditions was investigated. Additionally, to reduce silicon leaching, the silica surface was treated with methyltrimethoxysilane, vinyltriethoxysilane, and (3,3,3-trifluoropropyl)trimethoxysilane. Changes in the silica surface chemistry were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, thermogravimetric analysis, elemental analysis, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. Inductively coupled plasma-optical emission spectroscopy analysis revealed that surface-treated silica was highly effective in reducing silicon leaching.

20.
Micromachines (Basel) ; 15(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38675304

ABSTRACT

The increasing energy demands of the global community can be met with solar energy. Solution-processed organic solar cells have seen great progress in power conversion efficiencies (PCEs). Semitransparent organic solar cells (ST-OSCs) have made enormous progress in recent years and have been considered one of the most promising solar cell technologies for applications in building-integrated windows, agricultural greenhouses, and wearable energy resources. Therefore, through the synergistic efforts of transparent electrodes, engineering in near-infrared photoabsorbent materials, and device engineering, high-performance ST-OSCs have developed, and PCE and average visible transmittance reach over 10% and 40%, respectively. In this review, we present the recent progress in photoabsorbent material engineering and strategies for enhancing the performance of ST-OSCs to help researchers gain a better understanding of structure-property-performance relationships. To conclude, new design concepts in material engineering and outlook are proposed to facilitate the further development of high-performance ST-OSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...