Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38475479

ABSTRACT

The spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), is a pest that reduces the productivity of small fruits. Entomopathogenic nematodes (EPNs) and chemical insecticides can suppress this pest, but the compatibility of the two approaches together requires further examination. This laboratory study evaluated the compatibility of Steinernema brazilense IBCBn 06, S. carpocapsae IBCBn 02, Heterorhabditis amazonensis IBCBn 24, and H. bacteriophora HB with ten chemical insecticides registered for managing D. suzukii pupae. In the first study, most insecticides at the recommended rate did not reduce the viability (% of living infective juveniles (IJs)) of S. braziliense and both Heterorhabditis species. The viability of S. carpocapsae was lowered by exposure to spinetoram, malathion, abamectin, azadirachtin, deltamethrin, lambda-cyhalothrin, malathion, and spinetoram after 48 h. During infectivity bioassays, phosmet was compatible with all the EPNs, causing minimal changes in infectivity (% pupal mortality) and efficiency relative to EPN-only controls, whereas lambda-cyhalothrin generally reduced infectivity of EPNs on D. suzukii pupae the most, with a 53, 75, 57, and 13% reduction in infectivity efficiency among H. bacteriophora, H. amazonensis, S. carpocapsae, and S. brazilense, respectively. The second study compared pupal mortality caused by the two most compatible nematode species and five insecticides in various combinations. Both Heterorhabditis species caused 78-79% mortality among D. suzukii pupae when used alone, and were tested in combination with spinetoram, malathion, azadirachtin, phosmet, or novaluron at a one-quarter rate. Notably, H. bacteriophora caused 79% mortality on D. suzukii pupae when used alone, and 89% mortality when combined with spinetoram, showing an additive effect. Novaluron drastically reduced the number of progeny IJs when combined with H. amazonensis by 270 IJs and H. bacteriophora by 218. Any adult flies that emerged from EPN-insecticide-treated pupae had a shorter lifespan than from untreated pupae. The combined use of Heterorhabditis and compatible chemical insecticides was promising, except for novaluron.

2.
Curr Opin Insect Sci ; 61: 101158, 2024 02.
Article in English | MEDLINE | ID: mdl-38184071

ABSTRACT

When flowers, plants bearing extrafloral nectaries, or sugar sprays are added to agroecosystems, parasitoids are expected to feed, thereby improving biological control. This paper reviews studies where sugar-feeding of field-collected parasitoids were monitored via biochemical assays. When examined, trends in parasitoid abundance, energetic reserves, longevity, and per capita fecundity are also followed. Starved parasitoids readily feed on sugar sources in the field, and more individuals collected near sugar sources are categorized as 'fed' when sugar is otherwise limited in the agroecosystem. When sugar is not limited (i.e. honeydew prevalent), trends are not as clear. Some studies show improved fecundity and parasitism, while other studies show inconsistent trends between parasitoid feeding, abundance, longevity, and parasitism, with some responses improved but not others. Future research could address the dispersal or resting behavior of wasps following feeding since it can influence eventual biological control, and consider whether field sampling methods might over-/underestimate feeding.


Subject(s)
Parasites , Wasps , Humans , Animals , Sugars , Wasps/physiology , Fertility/physiology , Flowers
3.
Pest Manag Sci ; 79(12): 4990-5002, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37540766

ABSTRACT

BACKGROUND: Spotted-wing drosophila, Drosophila suzukii, is an economic pest of small fruits and cherries. Insecticides primarily control this pest while alternative controls are in development. Laboratory studies show that erythritol is insecticidal to D. suzukii and other pests while approved for human consumption. Moreover, erythritol combined with sucrose or non-caloric sucralose can stimulate feeding and quicken mortality. Before growers can use erythritol, the impact on crop protection, non-target insects, and fruit quality need evaluation. RESULTS: In three blueberry and cherry field cage trials, oviposition on fruit sprayed with erythritol:sucrose or erythritol:sucralose formulations was lowered by 59%-81% compared with unsprayed controls. Fly infestation (larval or adult counts from fruit) was 90% lower in a greenhouse blueberry trial, and 49% lower in an open field blueberry trial with 2 m erythritol : 0.5 m sucrose. Infestation was also 57% lower in an open field cherry trial with 1.5 m erythritol:0.5 m sucrose. Other field trials with very low pest pressure or frequent rains revealed no differences from controls. Field trials consistently revealed that honey bees did not preferentially visit plants sprayed with either erythritol formulation, although yellow jackets visited plants sprayed with erythritol:sucrose more frequently. Erythritol formulations consistently led to more leaf spotting, but there was no reduction in the quality of treated blueberries or cherries in terms of mold development, firmness, diameter, epidermal penetration force, and Brix° (total soluble solids) at harvest. CONCLUSION: Eleven trials conducted over four years show that erythritol formulations can reduce D. suzukii pressure without attracting foraging honey bees nor negatively impacting fruit quality. © 2023 Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Blueberry Plants , Insecticides , Female , Bees , Humans , Animals , Fruit , Drosophila , Erythritol , Insecticides/pharmacology , Sucrose/pharmacology , Insect Control
4.
Insects ; 14(5)2023 May 16.
Article in English | MEDLINE | ID: mdl-37233100

ABSTRACT

Tephritid fruit flies are among the most destructive agricultural pests of fruits and vegetables worldwide and can impose trade barriers against the movement of fresh tropical commodities. Primary pre-harvest control methods for these flies rely on the spraying of conventional chemical insecticides or bait sprays. However, resistance to these control methods has been reported in fruit flies. Erythritol is a non-nutritive sugar alternative for human consumption, which has been tested and confirmed for its insecticidal properties against various insect pest species. In this study, using laboratory bioassays, we evaluated the insecticidal effect of erythritol alone or various erythritol formulations containing sucrose and/or protein on four tropical fruit fly species established in Hawaii (e.g., melon fly, Mediterranean fruit fly, oriental fruit fly, and Malaysian fruit fly). In addition, the effects of other non-nutritive hexose and pentose sugar alcohols, such as sorbitol, mannitol, and xylitol, were tested. Among the different standalone and combinatory treatments tested, 1M erythritol and a combinatory formulation of 2M erythritol + 0.5M sucrose appeared to be the most detrimental to the survival of all four species of tested flies, suggesting the potential of using erythritol as a non-toxic management tool for the control of tropical tephritid fruit flies.

5.
Environ Entomol ; 52(1): 47-55, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36383202

ABSTRACT

Drosophila suzukii Matsumura, spotted-wing drosophila, is a major pest of small fruits and cherries and often managed with conventional insecticides. Our previous work found that erythritol, a nonnutritive polyol, has insecticidal properties to D. suzukii. Two formulations of erythritol (1.5M), with 0.5M sucrose or 0.1M sucralose, are most effective at killing D. suzukii. In this study, we investigated the nontarget effects of these erythritol formulations on honey bee Apis mellifera Linnaeus larvae, a pupal parasitoid of D. suzukii, Pachycrepoideus vindemiae Rondani, and western yellow jacket, Vespula pensylvanica Saussure. We directly exposed honey bee larvae by adding a high dose (2 µl) to larval cells and found no significant mortality from either formulation compared to the water control. Pachycrepoideus vindemiae may encounter erythritol in field settings when host plants of D. suzukii are sprayed. The erythritol+sucralose formulation was more detrimental than erythritol+sucrose to P. vindemiae, however, this effect was greatly reduced within a 21-d period when a floral source was present. Since yellow jackets are a nuisance pest and were attracted to the erythritol formulations in recent field trials, we tested adult V. pensylvanica survival with continuous consumption of these formulations in the laboratory. We found no detectable detriment from either formulation, compared to the sucrose control. Overall, both erythritol formulations caused minimal nontarget effects on honey bee larvae, P. vindemiae parasitoids, and western yellow jackets.


Subject(s)
Insecticides , Wasps , Bees , Animals , Drosophila , Larva , Pupa , Sugars , Insecticides/toxicity , Erythritol/pharmacology , Sucrose/pharmacology , Insect Control
6.
J Clin Aesthet Dermatol ; 15(12): 42-46, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36569524

ABSTRACT

Objective: This 12-week, multicenter, open-label study investigated the efficacy and tolerability of the HydraFacial Clarifying Treatment for improving skin appearance in patients who present with acne vulgaris. Methods: Twenty eligible adult patients with mild-to-moderate acne were enrolled at one of two treatment sites in the United States and were to undergo six HydraFacial Clarifying Treatments, one every two weeks for 12 weeks. Treatment occurs in three steps: cleansing and peeling; suction to extract dead skin cells, sebum, and debris; and application of blue LED light. Acne severity was graded by investigators and by patients using the Global Acne Severity Score (GASS). Results: The proportion of patients with no acne or almost clear skin (GASS ≤1) at baseline versus final treatment increased from 20 to 65 percent per investigator assessment (p=0.0027), and from 5 to 55 percent per patient self-report (p=0.0016). At final treatment, more than 80 to 100 percent of both investigators and patients agreed or strongly agreed there was an improvement in skin appearance across multiple assessment parameters. Treatments were generally well tolerated. Limitations: Due to the nature of the treatment, blinding of neither investigators nor patients was feasible. Conclusion: The results presented here suggest that a series of six HydraFacial Clarifying Treatments improves overall skin appearance in patients with active acne.

7.
Pest Manag Sci ; 78(11): 4929-4938, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36054536

ABSTRACT

BACKGROUND: Invasive species threaten the productivity and stability of natural and managed ecosystems. Predicting the spread of invaders, which can aid in early mitigation efforts, is a major challenge, especially in the face of climate change. While ecological niche models are effective tools to assess habitat suitability for invaders, such models have rarely been created for invasive pest species with rapidly expanding ranges. Here, we leveraged a national monitoring effort from 543 sites over 3 years to assess factors mediating the occurrence and abundance of brown marmorated stink bug (BMSB, Halyomorpha halys), an invasive insect pest that has readily established throughout much of the United States. RESULTS: We used maximum entropy models to estimate the suitable habitat of BMSB under several climate scenarios, and generalized boosted models to assess environmental factors that regulated BMSB abundance. Our models captured BMSB distribution and abundance with high accuracy, and predicted a 70% increase in suitable habitat under future climate scenarios. However, environmental factors that mediated the geographical distribution of BMSB were different from those driving abundance. While BMSB occurrence was most affected by winter precipitation and proximity to populated areas, BMSB abundance was influenced most strongly by evapotranspiration and solar photoperiod. CONCLUSION: Our results suggest that linking models of establishment (occurrence) and population dynamics (abundance) offers a more effective way to forecast the spread and impact of BMSB and other invasive species than simply occurrence-based models, allowing for targeted mitigation efforts. Implications of distribution shifts under climate change are discussed. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Ecosystem , Heteroptera , Animals , Climate Change , Introduced Species , Population Dynamics , United States
9.
J Econ Entomol ; 115(4): 922-942, 2022 08 10.
Article in English | MEDLINE | ID: mdl-34984457

ABSTRACT

We provide recommendations for sampling and identification of introduced larval parasitoids of spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). These parasitoids are either under consideration for importation (aka classical) biological control introductions, or their adventive (presumed to have been accidentally introduced) populations have recently been discovered in North America and Europe. Within the context of the ecology of D. suzukii and its parasitoids, we discuss advantages and disadvantages of estimating larval parasitism levels using different methods, including naturally collected fruit samples and sentinel baits. For most situations, we recommend repeated sampling of naturally occurring fruit rather than using sentinel baits to monitor seasonal dynamics of host plant-Drosophila-parasitoid associations. We describe how to separate Drosophilidae puparia from host fruit material in order to accurately estimate parasitism levels and establish host-parasitoid associations. We provide instructions for identification of emerging parasitoids and include a key to the common families of parasitoids of D. suzukii. We anticipate that the guidelines for methodology and interpretation of results that we provide here will form the basis for a large, multi-research team sampling effort in the coming years to characterize the biological control and nontarget impacts of accidentally and intentionally introduced larval parasitoids of D. suzukii in several regions of the world.


Subject(s)
Drosophila , Fruit , Animals , Europe , Insect Control/methods , Larva , North America
10.
Arch Insect Biochem Physiol ; 109(2): e21860, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34865250

ABSTRACT

The nonnutritive sugar, erythritol, has the potential to be a human-safe management tool for the small fruits and cherry pest, Drosophila suzukii, or spotted-wing drosophila. Feeding on erythritol decreases fly survival and oviposition by starving and creating an osmotic imbalance in the body. Recently, we demonstrated that erythritol combined with another nonnutritive sugar, sucralose, was fed upon more than erythritol alone and hastens D. suzukii mortality. This suggests that sucralose is a suitable nonnutritive phagostimulant alternative to sucrose. Although promising, the nutritional and physiological impacts of sucralose on D. suzukii are unknown. In this study, we investigated whether sucralose is metabolized or excreted by D. suzukii when fed various erythritol, sucrose, and sucralose formulations. We found that sucralose cannot be metabolized or converted into any nutritional substitutes or storage carbohydrates in D. suzukii. Instead, sucralose molecules were largely accumulated in the hemolymph and slowly excreted from the body, creating a significant osmotic imbalance in D. suzukii. To excrete unused sugars, flies will use their own body fluids to restore homeostasis, resulting in losing a substantial amount of body weight and becoming desiccated in the process. In summary, ingesting sucralose leads to starvation and hyperosmotic pressure in the body, causing a decrease in fitness. With confirmation of sucralose being non-metabolizable and phagostimulative to D. suzukii, the erythritol+sucralose formulation is a promising insecticide for growers to use.


Subject(s)
Body Fluids , Drosophila , Animals , Erythritol , Female , Insect Control , Lipids , Sugars
11.
J Econ Entomol ; 114(5): 1950-1974, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34516634

ABSTRACT

Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) also known as spotted-wing drosophila (SWD), is a pest native to Southeast Asia. In the last few decades, the pest has expanded its range to affect all major European and American fruit production regions. SWD is a highly adaptive insect that is able to disperse, survive, and flourish under a range of environmental conditions. Infestation by SWD generates both direct and indirect economic impacts through yield losses, shorter shelf life of infested fruit, and increased production costs. Fresh markets, frozen berries, and fruit export programs have been impacted by the pest due to zero tolerance for fruit infestation. As SWD control programs rely heavily on insecticides, exceedance of maximum residue levels (MRLs) has also resulted in crop rejections. The economic impact of SWD has been particularly severe for organic operations, mainly due to the limited availability of effective insecticides. Integrated pest management (IPM) of SWD could significantly reduce chemical inputs but would require substantial changes to horticultural management practices. This review evaluates the most promising methods studied as part of an IPM strategy against SWD across the world. For each of the considered techniques, the effectiveness, impact, sustainability, and stage of development are discussed.


Subject(s)
Drosophila , Insecticides , Animals , Fruit , Insect Control
12.
Insects ; 11(11)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153021

ABSTRACT

Drosophila suzukii is a severe economic invasive pest of soft-skinned fruit crops. Management typically requires killing gravid adult female flies with insecticides to prevent damage resulting from oviposition and larval development. Fruits from cultivated and uncultivated host plants are used by the flies for reproduction at different times of the year, and knowledge of D. suzukii seasonal host plant use and movement patterns could be better exploited to protect vulnerable crops. Rearing and various marking methodologies for tracking movement patterns of D. suzukii across different landscapes have been used to better understand host use and movement of the pest. In this study, we report on potential to determine larval host for adult D. suzukii using their fatty acid profile or signature, and to use larval diet as an internal marker for adult flies in release-recapture experiments. Fatty acids can pass efficiently through trophic levels unmodified, and insects are constrained in the ability to synthesize fatty acids and may acquire them through diet. In many holometabolous insects, lipids acquired in the larval stage carry over to the adult stage. We tested the ability of a machine learning algorithm to discriminate adult D. suzukii reared from susceptible small fruit crops (blueberry, strawberry, blackberry and raspberry) and laboratory diet based on the fatty acid profile of adult flies. We found that fatty acid components in adult flies were significantly different when flies were reared on different hosts, and the machine learning algorithm was highly successful in correctly classifying flies according to their larval host based on fatty acid profile.

13.
J Insect Sci ; 20(5)2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32869852

ABSTRACT

The azalea lace bug (Stephanitis pyrioides Scott) (Hemiptera: Tingidae) is an invasive pest of rhododendrons and azaleas (Ericaceae: Rhododendron), which feeds on the underside of leaves causing chlorosis, reduced photosynthesis, and even plant death. While insecticides can control this pest, growers, landscape managers, and homeowners have requested softer alternatives. Augmentative release of predatory green lacewing Chrysoperla sp. (Neuroptera: Chrysopidae) eggs and larvae has reduced S. pyrioides, but large-scale implementation may not be practical nor cost-effective. Attracting naturally occurring Chrysopidae with plant volatiles may be an economical and convenient option. In this study, we tested whether volatile blends 1) attracted Chrysoperla sp., and 2) controlled S. pyrioides populations on Rhododendron spp. in farm or urban landscapes. Experimental plots contained different multicomponent lures placed aboveground next to infested plants. Adult Chrysoperla sp., other natural enemies, and S. pyrioides from egg to adult stages were monitored in both farm and urban landscapes for two summers. Overall, two out of three volatile blends consistently attracted Chrysoperla sp. to sticky traps near baited plants. Methyl salicylate + acetic acid + 2-phenylethanol (methyl salicylate blend) and acetophenone + acetic acid + 2-phenylethanol (acetophenone blend) captured more adult Chrysoperla sp. than control traps in farm landscapes. However, only the acetophenone blend was associated with a slight reduction of S. pyrioides. Additional research is needed to determine whether the phenology of the first generation of both species are synchronized for effective season biological control in the Pacific Northwest.


Subject(s)
Chemotaxis , Hemiptera , Insect Control/instrumentation , Insecta/physiology , Volatile Organic Compounds/administration & dosage , Animals , Cities , Farms , Nymph , Oregon , Ovum , Rhododendron/growth & development
14.
Insects ; 11(7)2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32635248

ABSTRACT

The egg parasitoid Trissolcus japonicus is the main candidate for classical biocontrol of the invasive agricultural pest Halyomorpha halys. The efficacy of classical biocontrol depends on the parasitoid's survival and conservation in the agroecosystem. Most parasitoid species rely on floral nectar as a food source, thus identifying nectar sources for T. japonicus is critical. We evaluated the impact of eight flowering plant species on T. japonicus survival in the lab by exposing unfed wasps to flowers inside vials. We also measured the wasps' nutrient levels to confirm feeding and energy storage using anthrone and vanillin assays adapted for T. japonicus. Buckwheat, cilantro, and dill provided the best nectar sources for T. japonicus by improving median survival by 15, 3.5, and 17.5 days compared to water. These three nectar sources increased wasps' sugar levels, and cilantro and dill also increased glycogen levels. Sweet alyssum, marigold, crimson clover, yellow mustard, and phacelia did not improve wasp survival or nutrient reserves. Further research is needed to determine if these flowers maintain their benefits in the field and whether they will increase the parasitism rate of H. halys.

15.
J Econ Entomol ; 113(1): 288-298, 2020 02 08.
Article in English | MEDLINE | ID: mdl-31630205

ABSTRACT

Vinegar flies (Diptera: Drosophilidae) are well known to be associated with yeasts, which provide important nutrients and emit attractive semiochemicals. Drosophila suzukii (Matsumura) has become a major pest of berries and cherries around the world, requiring intensive management to maintain fruit quality. Although insecticides remain a dominant control approach, disruption of fly-yeast-host interactions remains a promising avenue for reducing the economic impact of this pest. We conducted field and laboratory experiments to explore whether a crop sterilant (peroxyacetic acid and hydrogen peroxide) developed for disease control can affect D. suzukii. In 2 yr of field tests in highbush blueberries, we found significantly lower infestation by D. suzukii in plots treated with the crop sterilant, both alone and in a rotation program with zeta-cypermethrin. When shoots from treated plots were tested in no-choice bioassays, crop sterilant treatments did not affect adult mortality or oviposition, but they reduced infestation. To explore the mechanisms in the laboratory, we found that the crop sterilant did not affect adult mortality, nor oviposition on treated fruit under no-choice settings, but adult flies settled and oviposited less on treated fruit in choice settings. When the crop sterilant was applied to colonies of Hanseniaspora uvarum (Niehaus) (Saccharomycetales: Saccharomycodaceae) and Issatchenkia terricola (Van der Walt) (Saccharomycetales: Saccharomycetacea) yeasts that are attractive and provide nutrition to D. suzukii, there was a dose-dependent inhibition of their growth. We highlight the potential for microbial management as a component of integrated pest management programs and prioritize research needs to incorporate this approach into control programs.


Subject(s)
Blueberry Plants , Insecticides , Animals , Drosophila , Female , Fruit , Insect Control , Oviposition
16.
J Econ Entomol ; 113(1): 159-171, 2020 02 08.
Article in English | MEDLINE | ID: mdl-31502635

ABSTRACT

Reliable monitoring of the invasive Halyomorpha halys abundance, phenology and geographic distribution is critical for its management. Halyomorpha halys adult and nymphal captures on clear sticky traps and in black pyramid traps were compared in 18 states across the Great Lakes, Mid-Atlantic, Southeast, Pacific Northwest and Western regions of the United States. Traps were baited with commercial lures containing the H. halys pheromone and synergist, and deployed at field sites bordering agricultural or urban locations with H. halys host plants. Nymphal and adult captures in pyramid traps were greater than those on sticky traps, but captures were positively correlated between the two trap types within each region and during the early-, mid- and late season across all sites. Sites were further classified as having a low, moderate or high relative H. halys density and again showed positive correlations between captures for the two trap types for nymphs and adults. Among regions, the greatest adult captures were recorded in the Southeast and Mid-Atlantic on pyramid and sticky traps, respectively, with lowest captures recorded in the West. Nymphal captures, while lower than adult captures, were greatest in the Southeast and lowest in the West. Nymphal and adult captures were, generally, greatest during July-August and September-October, respectively. Trapping data were compared with available phenological models showing comparable population peaks at most locations. Results demonstrated that sticky traps offer a simpler alternative to pyramid traps, but both can be reliable tools to monitor H. halys in different geographical locations with varying population densities throughout the season.


Subject(s)
Heteroptera , Animals , Nymph , Pheromones , Population Density , Seasons , United States
17.
Ecol Evol ; 9(5): 2615-2628, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31061698

ABSTRACT

Invasive animals depend on finding a balanced nutritional intake to colonize, survive, and reproduce in new environments. This can be especially challenging during situations of fluctuating cold temperatures and food scarcity, but phenotypic plasticity may offer an adaptive advantage during these periods. We examined how lifespan, fecundity, pre-oviposition periods, and body nutrient contents were affected by dietary protein and carbohydrate (P:C) ratios at variable low temperatures in two morphs (winter morphs WM and summer morphs SM) of an invasive fly, Drosophila suzukii. The experimental conditions simulated early spring after overwintering and autumn, crucial periods for survival. At lower temperatures, post-overwintering WM lived longer on carbohydrate-only diets and had higher fecundity on low-protein diets, but there was no difference in lifespan or fecundity among diets for SM. As temperatures increased, low-protein diets resulted in higher fecundity without compromising lifespan, while high-protein diets reduced lifespan and fecundity for both WM and SM. Both SM and WM receiving high-protein diets had lower sugar, lipid, and glycogen (but similar protein) body contents compared to flies receiving low-protein and carbohydrate-only diets. This suggests that flies spend energy excreting excess dietary protein, thereby affecting lifespan and fecundity. Despite having to recover from nutrient depletion after an overwintering period, WM exhibited longer lifespan and higher fecundity than SM in favorable diets and temperatures. WM exposed to favorable low-protein diet had higher body sugar, lipid, and protein body contents than SM, which is possibly linked to better performance. Although protein is essential for oogenesis, WM and SM flies receiving low-protein diets did not have shorter pre-oviposition periods compared to flies on carbohydrate-only diets. Finding adequate carbohydrate sources to compensate protein intake is essential for the successful persistence of D. suzukii WM and SM populations during suboptimal temperatures.

18.
J Econ Entomol ; 112(2): 981-985, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30496432

ABSTRACT

Previous studies have demonstrated various combinations of non-nutritive erythritol and sucrose having detrimental effects on Drosophila suzukii (Matsumura). Fly mortality is likely caused by 1) starvation from feeding on non-metabolizable erythritol; and 2) physiological imbalance with abnormally high osmotic pressure in the hemolymph. While erythritol kills D. suzukii in controlled environments, flies in the field can access naturally-occurring sugar sources. We evaluated fly mortality in the presence or absence of wounded fruits, and an erythritol mixture of 2.0 M erythritol:0.5 M sucrose (E+S), or erythritol- and sucrose-only controls. When provided E+S, survival was consistently lower than sucrose controls with/out wounded fruit, suggesting that this mixture still has a detrimental effect in the presence of competing sugar sources. Our second study examined the effects of diet on fecundity and egg load of female D. suzukii. Females laid fewer eggs on blueberries when fed E+S or erythritol-only than sucrose. Unexpectedly, females fed E+S had more ovarial eggs than sucrose-fed females, suggesting that erythritol might inhibit D. suzukii laying eggs. Lastly, we evaluated honey bee survivorship by enclosing bees with one of four diets in a cage. The erythritol mixture had no discernible impact on adult survivorship during 7 d.


Subject(s)
Blueberry Plants , Hymenoptera , Animals , Bees , Drosophila , Erythritol , Female , Sugars
19.
J Insect Sci ; 18(6)2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30445636

ABSTRACT

Life history parameters are used to estimate population dynamics, mortality, and reproduction in insects relative to their surrounding environment. For Drosophila suzukii Matsumura (Diptera: Drosophilidae), an invasive agricultural pest, previous studies have estimated net reproductive rate (Ro), generation time (T), and intrinsic rate of population increase (rm). A main limitation is that these estimates were measured under relatively favorable settings, and do not reflect environmental conditions and physiological states encountered during dormancy periods. Therefore, this study investigated the impacts of 1) low temperatures and 2) dietary protein: carbohydrate ratios (P:C) on both survival and fecundity parameters of D. suzukii summer morphs (SM) and postoverwintering winter morphs (WM) over physiological age (degree-days, DD). In both morphs, reproductive rates were higher and lifespan was longer when flies were exposed to low protein (P:C 1:4) or carbohydrate-only diets (P:C 0:1) compared with high protein diets (P:C 1:1). WM had higher reproductive rates and longer generation times than SM on optimal 1:4 diet in all trialed temperatures, but at the lowest temperatures, SM had higher reproductive rates than WM in carbohydrate-only and high protein diets. This likely reflected delayed oogenesis and hindered reproduction after an overwintering period in WM receiving suboptimal diets. Oviposition for SM and WM receiving 1:4 diet commenced from 0 to 100 DD, and peaked between 400 and 500 DD, earlier than flies receiving 0:1 diet. These results suggest that dietary protein has a crucial role in early oogenesis, particularly for postoverwintering WM. The parameters developed here reflect the population dynamics of D. suzukii before and after the crop growing season, an essential time for population buildup, survival, and early and late host infestation.


Subject(s)
Cold Temperature , Diet , Drosophila/physiology , Fertility/physiology , Animals , Drosophila/anatomy & histology , Survival Analysis
20.
Insects ; 9(3)2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30227595

ABSTRACT

Halyomorpha halys (Stål), or brown marmorated stink bug (BMSB), has become a major pest and nuisance for both agricultural growers and homeowners since its arrival in North America and Europe. The nutritional ecology of BMSB is important for understanding its life history and rearing requirements. However, little is known about the nutritional status of wild populations, especially in the U.S. This research monitored the nutrient status of nymphal and adult BMSB collected from English holly in western Oregon. We measured their weight, nutrient index (weight/(prothorax × width)³), lipid, glycogen and sugar levels and egg load from May⁻September/October. First, glycogen and sugar levels of adults were often lowest sometime in June-August with a general increase by September. Meanwhile, their lipid levels varied without a discernible trend. Second, adult females had few eggs in May, with the highest egg load in June and July, and no eggs by September. Lastly, first and second nymphal instars were found in June, and fourth and fifth instars in September. Because nothing is known about the nutrient levels of nymphs, the reported values from this survey can assist future research on physiological responses of BMSB to treatments or environmental impacts in the field.

SELECTION OF CITATIONS
SEARCH DETAIL
...