Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38934926

ABSTRACT

Developing robust oxygen evolution reaction (OER) electrocatalysts is crucial for advancing anion exchange membrane water electrolysis (AEMWE). In this study, we present a catalyst optimizing the synergistic effect of Co and Fe by creating a CoFe-based layer on a Fe-based electrode (Fe@CoFe). The Fe@CoFe exhibits an overpotential of 168 mV at 10 mA cm-2 under half-cell conditions and a current density of 10 A cm-2 at 2 V in the AEMWE system with 1 M KOH. Moreover, it showcases a degradation rate of 76 µV h-1 for 2000 h at 500 mA cm-2 in the single-cell system. This study demonstrates the feasibility of achieving efficient and durable water electrolysis using a transition metal-based catalyst exclusively fabricated via electrodeposition.

2.
Heliyon ; 10(4): e26680, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38434046

ABSTRACT

A poly(p-phenylene)-based multiblock polymer is developed with an oligomeric chain extender and cerium (CE-sPP-PPES + Ce3+) to realize better performance and durability in proton exchange membrane fuel cells. The membrane performance is evaluated in single cells at 80 °C and at 100% and 50% relative humidity (RH). The accelerated stability test is conducted 90 °C and 30% RH, during which linear sweep voltammetry and hydrogen permeation detection are monitored periodically. Results demonstrate that the proton conductivity of the pristine hydrocarbon membranes is superior to that of PFSA membranes, and the hydrogen crossover is significantly lower. In addition, a composite membrane containing cerium performs similarly to a pristine membrane, particularly at low RH levels. Adding cerium to CE-sPP-PPES + Ce3+ membranes improves their chemical durability significantly, with an open circuit voltage decay rate of only 89 µV/h for 1000 h. The hydrogen crossover is maintained across accelerated stability tests, as confirmed by hydrogen detection and crossover current density. The short-circuit resistance indicates that membrane thinning is less likely to occur. Collectively, these results demonstrate that a hydrocarbon membrane with cerium is a potential alternative for fuel cell applications.

3.
Langmuir ; 39(51): 18834-18845, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38091527

ABSTRACT

Hydrocarbon (HC)-based block copolymers have been recognized as promising candidates for proton exchange membranes (PEMs) due to their distinct hydrophilic-hydrophobic separation, which results in improved proton transport compared to that of random copolymers. However, most PEMs derived from HC-based ionomers, including block copolymers, encounter challenges related to durability in electrochemical cells due to their low mechanical and chemical properties. One method for reinforcing HC-based ionomers involves incorporating the ionomers into commercially available low surface tension PTFE porous substrates. Nevertheless, the high interfacial energy between the hydrocarbon-based ionomer solution and PTFE remains a challenge in this reinforcement process, which necessitates the application of surface energy treatment to PTFE. Here, multiblock sulfonated poly(arylene ether sulfone) (SPAES) ionomers are being reinforced using untreated PE on the surface, and this is compared to reinforcement using surface-treated porous PTFE. The PE support layer exhibits a lower surface energy barrier compared to the surface-treated PTFE layer for the infiltration of the multiblock SPAES solution. This is characterized by the absence of noticeable voids, high translucency, gas impermeability, and a physical and chemical stability. By utilizing a high surface tension PE support with a comparable value to the multiblock SPAES, effective reinforcement of the multiblock SPAES ionomers is achieved for a PEM, which is potentially applicable to various hydrogen energy-based electrochemical cells.

4.
Polymers (Basel) ; 15(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37050364

ABSTRACT

Glassy hydrocarbon-based membranes are being researched as a replacement for perfluorosulfonic acid (PFSA) membranes in proton exchange membrane water electrolysis (PEMWE). Here, naphthalene containing Poly(arylene Ether Ketone) was introduced into the Poly(p-phenylene)-based multi-block copolymers through Ni(0)-catalyzed coupling reaction to enhance π-π interactions of the naphthalene units. It is discovered that there is an optimum input ratio of the hydrophilic monomer and NBP oligomer for the multi-block copolymers with high ion exchange capacity (IEC) and polymerization yield. With the optimum input ratio, the naphthalene containing copolymer exhibits good hydrogen gas barrier property, chemical stability, and mechanical toughness, even with its high IEC value over 2.4 meq g-1. The membrane shows 3.6 times higher proton selectivity to hydrogen gas than Nafion 212. The PEMWE single cells using the membrane performed better (5.5 A cm-2) than Nafion 212 (4.75 A cm-2) at 1.9 V and 80 °C. These findings suggest that naphthalene containing copolymer membranes are a promising replacement for PFSA membranes in PEMWE.

5.
Polymers (Basel) ; 14(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35566819

ABSTRACT

Herein, we developed polyacrylonitrile (PAN)-based nanoporous composite membranes incorporating aluminum diethylphosphinate (ADEP) for use as a heat-resistant and flame-retardant separator in high-performance and safe lithium-ion batteries (LIBs). ADEP is phosphorus-rich, thermally stable, and flame retardant, and it can effectively suppress the combustibility of PAN nanofibers. Nanofibrous membranes were obtained by electrospinning, and the content of ADEP varied from 0 to 20 wt%. From the vertical burning test, it was demonstrated that the flame retardancy of the composite membranes was enhanced when more than 5 wt% of ADEP was added to PAN, potentially increasing the safety level of LIBs. Moreover, the composite membrane showed higher ionic conductivity and electrolyte uptake (0.83 mS/cm and 137%) compared to those of commercial polypropylene (PP) membranes (Celgard 2400: 0.65 mS/cm and 63%), resulting from interconnected pores and the polar chemical composition in the composite membranes. In terms of battery performance, the composite membrane showed highly stable electrochemical and heat-resistant properties, including superior discharge capacity when compared to Celgard 2400, indicating that the PAN/ADEP composite membrane has the potential to be used as a heat-resistant and flame-retardant separator for safe and high-power LIBs.

6.
ACS Omega ; 6(26): 16924-16933, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34250351

ABSTRACT

Achieving high ionic conductivity, wide voltage window, and good mechanical strength in a single material remains a key challenge for polymer-based electrolytes for use in solid-state supercapacitors (SCs). Herein, we report cross-linked composite gel polymer electrolytes (CGPEs) based on multi-cross-linkable H-shaped poly(ethylene oxide)-poly(propylene oxide) (PEO-PPO) tetrablock copolymer precursors, SiO2 nanoparticles, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, an ionic liquid (IL). Self-standing CGPE membranes with a high IL content were prepared using in situ cross-linking reactions between the silane groups present in the precursor and the SiO2 surface. The incorporation of an optimal amount of SiO2 increased the cross-linking density of the resulting CGPE while reducing polymer-chain ordering and, consequently, increasing both ionic conductivity and mechanical strength. As a result, the CGPE with 0.1 wt % SiO2 exhibited a high ionic conductivity (2.22 × 10-3 S cm-1 at 25 °C), good tensile strength (453 kPa), and high thermal stability up to 330 °C. Finally, an all-solid-state SC assembled with the prepared CGPE showed a high operating voltage (3 V), a large specific capacitance (103.9 F g-1 at 1 A g-1), and excellent durability (94% capacitance retention over 10,000 charge/discharge cycles), which highlights its strong potential as a solid-state electrolyte for SCs.

7.
Langmuir ; 37(12): 3694-3701, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33729784

ABSTRACT

For a mechanically tough proton exchange membrane, a composite membrane incorporated with a porous polymer substrate is of great interest to suppress the ionomer swelling and to improve the dimensional stability and mechanical strength of the ionomers. For the composite membranes, good impregnation of substrate-incompatible ionomer solution into the substrate pores still remains one of the challenges to be solved. Here, we demonstrated a facile process (surface treatment with solvents compatible with both substrate and the ionomer solution) for the fabrication of the composite membranes using polytetrafluoroethylene (PTFE) as a porous substrate and poly(arylene ether sulfone) (SPAES) as a hydrocarbon-based (HC) ionomer. Appropriate solvents for the surface treatment were sought through the contact angle measurement, and it was found that alcohol solvents effectively tuned the surface property of PTFE pores to facilitate the penetration of the SPAES/N-methyl-2-pyrrolidone (NMP) solution into ∼300 nm pores of the substrate. Using this simple alcohol treatment, the SPAES/NMP contact angle was reduced in half, and we could fabricate the mechanically tough PTFE/HC composite membranes, which were apparently translucent and microscopically almost void-free composite membranes.

8.
RSC Adv ; 9(47): 27500-27509, 2019 Aug 29.
Article in English | MEDLINE | ID: mdl-35529237

ABSTRACT

A poly(ethylene)-reinforced anion exchange membrane based on cross-linked quaternary-aminated polystyrene and quaternary-aminated poly(phenylene oxide) was developed for reverse electrodialysis. Although reverse electrodialysis is a clean and renewable energy generation system, the low power output and high membrane cost are serious obstacles to its commercialization. Herein, to lower the membrane cost, inexpensive polystyrene and poly(phenylene oxide) were used as ionomer backbones. The ionomers were impregnated into a poly(ethylene) matrix supporter and were cross-linked in situ to enhance the mechanical and chemical properties. Pre-treatment of the porous PE matrix membrane with atmospheric plasma increased the compatibility between the ionomer and matrix membrane. The fabricated membranes showed outstanding physical, chemical, and electrochemical properties. The area resistance of the fabricated membranes (0.69-1.67 Ω cm2) was lower than that of AMV (2.58 Ω cm2). Moreover, the transport number of PErC(5)QPS-QPPO was comparable to that of AMV, despite the thinness (51 µm) of the former. The RED stack with the PErC(5)QPS-QPPO membrane provided an excellent maximum power density of 1.82 W m-2 at a flow rate of 100 mL min-1, which is 20.7% higher than that (1.50 W m-2) of the RED stack with the AMV membrane.

9.
ACS Appl Mater Interfaces ; 10(23): 19689-19696, 2018 Jun 13.
Article in English | MEDLINE | ID: mdl-29851455

ABSTRACT

It is known that uniaxially drawn perfluoronated sulfonic-acid ionomers (PFSAs) show diffusion anisotropy because of the aligned water channels along the deformation direction. We apply the uniaxially stretched membranes to vanadium redox flow batteries (VRFBs) to suppress the permeation of active species, vanadium ions through the transverse directions. The aligned water channels render much lower vanadium permeability, resulting in higher Coulombic efficiency (>98%) and longer self-discharge time (>250 h). Similar to vanadium ions, proton conduction through the membranes also decreases as the stretching ratio increases, but the thinned membranes show the enhanced voltage and energy efficiencies over the range of current density, 50-100 mA/cm2. Hydrophilic channel alignment of PFSAs is also beneficial for long-term cycling of VRFBs in terms of capacity retention and cell performances. This simple pretreatment of membranes offers an effective and facile way to overcome high vanadium permeability of PFSAs for VRFBs.

10.
Nano Lett ; 18(6): 3962-3968, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29723474

ABSTRACT

The laminated structure of graphene oxide (GO) membranes provides exceptional ion-separation properties due to the regular interlayer spacing ( d) between laminate layers. However, a larger effective pore size of the laminate immersed in water (∼11.1 Å) than the hydrated diameter of vanadium ions (>6.0 Å) prevents its use in vanadium redox-flow batteries (VRFB). In this work, we report an ion-selective graphene oxide framework (GOF) with a d tuned by cross-linking the GO nanosheets. Its effective pore size (∼5.9 Å) excludes vanadium ions by size but allows proton conduction. The GOF membrane is employed as a protective layer to address the poor chemical stability of sulfonated poly(arylene ether sulfone) (SPAES) membranes against VO2+ in VRFB. By effectively blocking vanadium ions, the GOF/SPAES membrane exhibits vanadium-ion permeability 4.2 times lower and a durability 5 times longer than that of the pristine SPAES membrane. Moreover, the VRFB with the GOF/SPAES membrane achieves an energy efficiency of 89% at 80 mA cm-2 and a capacity retention of 88% even after 400 cycles, far exceeding results for Nafion 115 and demonstrating its practical applicability for VRFB.

11.
RSC Adv ; 8(45): 25304-25312, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-35539795

ABSTRACT

In order to increase the chemical stability of polybenzimidazole (PBI) membrane against the highly oxidizing environment of a vanadium redox flow battery (VRFB), PBI/Nafion hybrid membrane was developed by spray coating a Nafion ionomer onto one surface of the PBI membrane. The acid-base interaction between the sulfonic acid of the Nafion and the benzimidazole of the PBI created a stable interfacial adhesion between the Nafion layer and the PBI layer. The hybrid membrane showed an area resistance of 0.269 Ω cm2 and a very low vanadium permeability of 1.95 × 10-9 cm2 min-1. The Nafion layer protected the PBI from chemical degradation under accelerated oxidizing conditions of 1 M VO2 +/5 M H2SO4, and this was subsequently examined in spectroscopic analysis. In the VRFB single cell performance test, the cell with the hybrid membrane showed better energy efficiency than the Nafion cell with 92.66% at 40 mA cm-2 and 78.1% at 100 mA cm-2 with no delamination observed between the Nafion layer and the PBI layer after the test was completed.

12.
ACS Appl Mater Interfaces ; 9(39): 33913-33924, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28892608

ABSTRACT

We present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.0 × 10-3 S cm-1) and good mechanical stability (maximum strain = 194%). Moreover, our polymer electrolytes have various advantages including high thermal stability (decomposition temperature > 330 °C) and the capability to impregnate electrodes to form an excellent electrode-electrolyte interface due to the very low viscosity of the precursors. By assembling our GPE-impregnated electrodes and solid-state GPE film, we demonstrate an all-solid-state SC that can operate at 3 V and provides an improved specific capacitance (112.3 F g-1 at 0.1 A g-1), better rate capability (64% capacity retention until 20 A g-1), and excellent cycle stability (95% capacitance decay over 10 000 charge/discharge cycles) compared with those of a reference SC using a conventional PEO electrolyte. Finally, flexible SCs with a high energy density (22.6 W h kg-1 at 1 A g-1) and an excellent flexibility (>93% capacitance retention after 5000 bending cycles) can successfully be obtained.

13.
Sensors (Basel) ; 15(11): 28472-89, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26569251

ABSTRACT

The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality.

14.
Plant Sci ; 217-218: 27-35, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24467893

ABSTRACT

To produce genistein in rice, the isoflavone synthase (IFS) genes, SpdIFS1 and SpdIFS2 were cloned from the Korean soybean cultivar, Sinpaldalkong II as it has a higher genistein content than other soybean varieties. SpdIFS1 and SpdIFS2 show a 99.6% and 98.2% identity at the nucleotide level and 99.4% and 97.9% identity at the amino acid level, respectively, with IFS1 and IFS2 from soybean (GenBank accession Nos. AF195798 and AF195819). Plant expression vectors were constructed harboring SpdIFS1 or SpdIFS2 under the control of a rice globulin promoter that directs seed specific expression, and used to transform two rice varieties, Heugnam, a black rice, and Nakdong, a normal rice cultivar without anthocyanin pigment. Because naringenin, the substrate of SpdIFS1 and SpdIFS2, is on the anthocyanin biosynthesis pathway, the relative production rate of genistein was compared between SpdIFS-expressing transgenic Heugnam and Nakdong. Southern blot analysis of eight of the resulting transgenic rice plants revealed that the T0 plants had one to three copies of the SpdIFS1 or SpdIFS2 gene. The highest level of genistein content found in rice seeds was 103 µg/g. These levels were about 30-fold higher in our transgenic rice lines than the genistein aglycon content of a non-leguminous IFS-expressing transgenic tobacco petal, equaling about 12% of total genistein content of Sinpaldalkong II. There were no significant differences found between the genistein content in Heugnam and Nakdong transgenic rice plants.


Subject(s)
Endosperm/enzymology , Genistein/metabolism , Glycine max/genetics , Oryza/enzymology , Oxygenases/genetics , Plants, Genetically Modified/metabolism , Amino Acid Sequence , Anthocyanins/biosynthesis , Cloning, Molecular , Molecular Sequence Data , Oryza/embryology , Oryza/genetics , Seeds
15.
J Nanosci Nanotechnol ; 10(1): 99-105, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20352817

ABSTRACT

A conjugated copolymer based on 9,9-dioctyl-fluorene and 2,3-bis(4-(hexyloxy)phenyl) quinoxaline has been synthesized by the palladium-catalyzed Suzuki coupling reaction. The synthesized polymer was soluble in common organic solvents such as chloroform, THF, and toluene and had good film properties. The polymer was analyzed by 1H-NMR spectroscopy, UV-vis spectroscopy, GPC, TGA, DSC, and cyclic voltammetry. It had very good thermal properties with high decomposition and glass transition temperatures, 420 degrees C and 159 degrees C respectively, and a low band gap of 2.51 eV. The polymer LEDs (ITO/PEDOT:PSS/polymer/LiF/Ca/Al) showed pure green light emission with maximum peaks at 502 nm and CIE coordinates of x = 0.28 and y = 0.55. The turn-on voltage of the polymer device was 7 V and the maximum brightness was 10.16 cd/m2 at 14 V. The maximum luminescence efficiency of the polymer was 0.0011 cd/A at 11 V.


Subject(s)
Fluorenes/chemistry , Luminescent Measurements/methods , Polymers/chemistry , Quinoxalines/chemistry , Chloroform , Fluorenes/chemical synthesis , Nuclear Magnetic Resonance, Biomolecular , Polymers/chemical synthesis , Quinoxalines/chemical synthesis , Solubility , Temperature
16.
Mol Cells ; 28(2): 131-7, 2009 Aug 31.
Article in English | MEDLINE | ID: mdl-19714315

ABSTRACT

Plant defensins are small (5-10 kDa) basic peptides thought to be an important component of the defense pathway against fungal and/or bacterial pathogens. To understand the role of plant defensins in protecting plants against the brown planthopper, a type of insect herbivore, we isolated the Brassica rapa Defensin 1 (BrD1) gene and introduced it into rice (Oryza sativa L.) to produce stable transgenic plants. The BrD1 protein is homologous to other plant defensins and contains both an N-terminal endoplasmic reticulum signal sequence and a defensin domain, which are highly conserved in all plant defensins. Based on a phylogenetic analysis of the defensin domain of various plant defensins, we established that BrD1 belongs to a distinct subgroup of plant defensins. Relative to the wild type, transgenic rices expressing BrD1 exhibit strong resistance to brown planthopper nymphs and female adults. These results suggest that BrD1 exhibits insecticidal activity, and might be useful for developing cereal crop plants resistant to sap-sucking insects, such as the brown planthopper.


Subject(s)
Brassica rapa/genetics , Defensins/genetics , Hemiptera/growth & development , Oryza/genetics , Plant Proteins/genetics , Amino Acid Sequence , Animals , Base Sequence , DNA, Complementary/genetics , DNA, Complementary/isolation & purification , Defensins/classification , Gene Expression Regulation, Plant , Immunity, Innate/genetics , Molecular Sequence Data , Oryza/growth & development , Oryza/parasitology , Phylogeny , Plant Diseases/genetics , Plant Diseases/parasitology , Plant Proteins/classification , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Time Factors
17.
Mol Cells ; 26(6): 616-20, 2008 Dec 31.
Article in English | MEDLINE | ID: mdl-19011360

ABSTRACT

Maintaining redox balance is one of the crucial requirements for a cell to endure stress from the outside. Dehydroascorbate reductase (DHAR; EC 1.8.5.1) plays an important role in the ascorbate-glutathione cycle; one of the major ROS scavenging systems in most known biological systems. A cDNA clone of the DHAR gene from Oryza sativa (OsDHAR) was isolated and overexpressed in Escherichia coli BL21 (DE3) strain from the pET-28a(+) expression vector. The OsDHAR transformed E. coli cells showed significantly higher DHAR activity and a lower level of ROS than the E. coli cells transformed by an empty pET-28a(+) vector. Also, the DHAR-overexpressing E. coli strain was more tolerant to oxidant- and heavy metal-mediated stress conditions than the control E. coli strain. The results suggest that the overexpressed rice DHAR gene effectively functions in a prokaryotic system and provide protection to various oxidative stresses.


Subject(s)
Escherichia coli/metabolism , Oryza/enzymology , Oxidative Stress/genetics , Oxidoreductases/physiology , Reactive Oxygen Species/metabolism , Cloning, Molecular , Escherichia coli/genetics
18.
Mol Cells ; 24(2): 232-9, 2007 Oct 31.
Article in English | MEDLINE | ID: mdl-17978576

ABSTRACT

HrpN(EP), from the gram-negative pathogen, Erwinia pyrifoliae, is a member of the harpin group of proteins, inducing pathogen resistance and hypersensitive cell death in plants. When the hrpN(EP) gene driven by the OsCc1 promoter was introduced into tobacco plants via Agrobacterium-mediated transformation, their resistance to the necrotrophic fungal pathogen, Botrytis cinerea, increased. Resistance to B. cinerea was correlated with enhanced induction of SA-dependent genes such as PR-1a, PR2, PR3 and Chia5, of JA-dependent genes such as PR-1b, and of genes related to ethylene production, such as NT-EFE26, NT-1A1C, DS321, NT-ACS1 and NT-ACS2. However the expression of NPR1, which is thought to be essential for multiple-resistance, did not increase. Since the pattern of expression of defense-related genes in hrpN(EP)-expressing tobacco differed from that in plants expressing hpaG(Xoo) from Xanthomonas oryzae pv. Oryzae, these results suggest that different harpins can affect the expression of different defense-related genes, as well as resistance to different plant pathogens.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Botrytis/physiology , Erwinia/genetics , Genes, Bacterial , Nicotiana/immunology , Nicotiana/microbiology , Cell Death , Disease Susceptibility , Genes, Plant , Immunity, Innate , Inheritance Patterns , Plant Diseases/immunology , Plants, Genetically Modified , Nicotiana/cytology , Nicotiana/genetics , Transformation, Genetic
19.
Plant Mol Biol ; 62(3): 397-408, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16897470

ABSTRACT

A tapetum-specific gene, RTS, has been isolated by differential screening of a cDNA library from rice panicles. RTS is a unique gene in the rice genome. RNA blot analysis and in situ hybridization indicates that this gene is predominantly expressed in the anther's tapetum during meiosis and disappears before anthesis. RTS has no introns and encodes a putative polypeptide of 94 amino acids with a hydrophobic N-terminal region. The nucleotide and deduced amino acid sequence of the gene do not show significant homology to any known sequences. However, a sequence in the promoter region, GAATTTGTTA, differs only by one or two nucleotides from one of the conserved motifs in the promoter region of two pollen-specific genes of tomato. Several other sequence motifs found in other anther-specific promoters were also identified in the promoter of the RTS gene. Transgenic and antisense RNA approaches revealed that RTS gene is required for male fertility in rice. The promoter region of RTS, when fused to the Bacillus amyloliquefaciens ribonuclease gene, barnase, or the antisense of the RTS gene, is able to drive tissue-specific expression of both genes in rice, creeping bentgrass (Agrostis stolonifera L.) and Arabidopsis, conferring male sterility to the transgenic plants. Light and near-infrared confocal microscopy of cross-sections through developing flowers of male-sterile transgenics shows that tissue-specific expression of barnase or the antisense RTS genes interrupts tapetal development, resulting in deformed non-viable pollen. These results demonstrate a critical role of the RTS gene in pollen development in rice and the versatile application of the RTS gene promoter in directing anther-specific gene expression in both monocotyledonous and dicotyledonous plants, pointing to a potential for exploiting this gene and its promoter for engineering male sterility for hybrid production of various plant species.


Subject(s)
Gene Expression Regulation, Plant/genetics , Genes, Plant , Oryza/genetics , Promoter Regions, Genetic , Amino Acid Sequence , Base Sequence , Blotting, Northern , Blotting, Southern , DNA, Complementary , In Situ Hybridization , Molecular Sequence Data , Oryza/physiology , Species Specificity
20.
Plant Dis ; 87(11): 1372-1375, 2003 Nov.
Article in English | MEDLINE | ID: mdl-30812556

ABSTRACT

A new Soybean mosaic virus (SMV) strain was isolated in Korea and designated as G7H. Its virulence on eight differentials and 42 Korean soybean cultivars was compared with existing SMV strains. G7H caused the same symptoms as G7 did on the eight differential cultivars. However, it caused different symptoms on the G7-immune Korean soybean cultivars; G7H caused necrosis in Suwon 97 (Hwangkeumkong) and Suwon 181 (Daewonkong), and a mosaic symptom in Miryang 41 (Duyoukong), while G7 caused only local lesions on those varieties. The nucleotide sequence of the cylindrical inclusion region of G7H was determined and compared with other SMV strains. G7H shared 96.3 and 91.3% nucleotide similarities with G2 and G7, respectively; whereas G7 shared 95.6% nucleotide similarity with G5H.

SELECTION OF CITATIONS
SEARCH DETAIL
...