Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neuro Oncol ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38366847

ABSTRACT

BACKGROUND: Precision treatment of glioblastoma is increasingly focused on molecular subtyping, with the mesenchymal subtype particularly resistant to temozolomide. Here, we aim to develop a targeted therapy for temozolomide resensitization in the mesenchymal subtype. METHODS: We integrated kinomic profiles and kinase inhibitor screens from patient-derived proneural and mesenchymal glioma-propagating cells public clinical datasets to identify key protein kinases implicated in temozolomide resistance. RNAseq, apoptosis assays and comet assays were used to examine the role of p38MAPK signaling and adaptive chemoresistance in mesenchymal cells. The efficacy of dual p38MAPK and MEK/ERK inhibition using ralimetinib (selective orally active p38MAPK inhibitor; phase I/II for glioblastoma) and binimetinib (approved MEK1/2 inhibitor for melanoma; phase II for high-grade glioma) in primary and recurrent mesenchymal tumors was evaluated using an intracranial patient-derived tumor xenograft model, focusing on survival analysis. RESULTS: Our transcriptomic-kinomic integrative analysis revealed p38MAPK as the prime target whose gene signature enables patient stratification based on their molecular subtypes and provides prognostic value. Repurposed p38MAPK inhibitors synergize favourably with temozolomide to promote intracellular retention of temozolomide and exacerbate DNA damage. Mesenchymal cells exhibit adaptive chemoresistance to p38MAPK inhibition through a pH-/calcium-mediated MEK/ERK pathway. Dual p38MAPK and MEK inhibition effectively maintains temozolomide sensitivity in primary and recurrent intracranial mesenchymal glioblastoma xenografts. CONCLUSION: Temozolomide resistance in mesenchymal glioblastoma is associated with p38MAPK activation. Adaptive chemoresistance in p38MAPK-resistant cells is mediated by MEK/ERK signaling. Adjuvant therapy with dual p38MAPK and MEK inhibition prolongs temozolomide sensitivity, which can be developed into a precision therapy for the mesenchymal subtype.

2.
Adv Healthc Mater ; 13(10): e2303481, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37987244

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) plays a crucial role in metastatic cancer progression, and current research, which relies heavily on 2D monolayer cultures, falls short in recapitulating the complexity of a 3D tumor microenvironment. To address this limitation, a transcriptomic meta-analysis is conducted on diverse cancer types undergoing EMT in 2D and 3D cultures. It is found that mechanotransduction is elevated in 3D cultures and is further intensified during EMT, but not during 2D EMT. This analysis reveals a distinct 3D EMT gene signature, characterized by extracellular matrix remodeling coordinated by angiopoietin-like 4 (Angptl4) along with other canonical EMT regulators. Utilizing hydrogel-based 3D matrices with adjustable mechanical forces, 3D cancer cultures are established at varying physiological stiffness levels. A YAP:EGR-1 mediated up-regulation of Angptl4 expression is observed, accompanied by an upregulation of mesenchymal markers, at higher stiffness during cancer EMT. Suppression of Angptl4 using antisense oligonucleotides or anti-cAngptl4 antibodies leads to a dose-dependent abolishment of EMT-mediated chemoresistance and tumor self-organization in 3D, ultimately resulting in diminished metastatic potential and stunted growth of tumor xenografts. This unique programmable 3D cancer cultures simulate stiffness levels in the tumor microenvironment and unveil Angptl4 as a promising therapeutic target to inhibit EMT and impede cancer progression.


Subject(s)
Mechanotransduction, Cellular , Neoplasms , Humans , Cell Line, Tumor , Tumor Microenvironment , Mechanical Phenomena , Angiopoietins , Epithelial-Mesenchymal Transition/genetics , Neoplasms/drug therapy
3.
Adv Sci (Weinh) ; 10(31): e2301714, 2023 11.
Article in English | MEDLINE | ID: mdl-37759388

ABSTRACT

Metastasis involves epithelial-to-mesenchymal transition (EMT), a process that is regulated by complex gene networks, where their deliberate disruption may yield a promising outcome. However, little is known about mechanisms that coordinate these metastasis-associated networks. To address this gap, hub genes with broad engagement across various human cancers by analyzing the transcriptomes of different cancer cell types undergoing EMT are identified. The oncogenic signaling adaptor protein tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG) is ranked top for its clinical relevance and impact. The cellular kinome and transcriptome data are surveyed to construct the regulome of YWHAG, revealing stress responses and metabolic processes during cancer EMT. It is demonstrated that a YWHAG-dependent cytoprotective mechanism in the regulome is embedded in EMT-associated networks to protect cancer cells from oxidative catastrophe through enhanced autophagy during EMT. YWHAG deficiency results in a rapid accumulation of reactive oxygen species (ROS), delayed EMT, and cell death. Tumor allografts show that metastasis potential and overall survival time are correlated with the YWHAG expression level of cancer cell lines. Metastasized tumors have higher expression of YWHAG and autophagy-related genes than primary tumors. Silencing YWHAG diminishes primary tumor volumes, prevents metastasis, and prolongs the median survival period of the mice.


Subject(s)
Neoplasms , Humans , Animals , Mice , Neoplasms/genetics , Signal Transduction , Epithelial-Mesenchymal Transition/genetics , Cell Death , Oxidative Stress/genetics , 14-3-3 Proteins/genetics
4.
Am J Respir Crit Care Med ; 207(7): 908-920, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36288294

ABSTRACT

Rationale: Emerging data support the existence of a microbial "gut-lung" axis that remains unexplored in bronchiectasis. Methods: Prospective and concurrent sampling of gut (stool) and lung (sputum) was performed in a cohort of n = 57 individuals with bronchiectasis and subjected to bacteriome (16S rRNA) and mycobiome (18S Internal Transcribed Spacer) sequencing (total, 228 microbiomes). Shotgun metagenomics was performed in a subset (n = 15; 30 microbiomes). Data from gut and lung compartments were integrated by weighted similarity network fusion, clustered, and subjected to co-occurrence analysis to evaluate gut-lung networks. Murine experiments were undertaken to validate specific Pseudomonas-driven gut-lung interactions. Results: Microbial communities in stable bronchiectasis demonstrate a significant gut-lung interaction. Multibiome integration followed by unsupervised clustering reveals two patient clusters, differing by gut-lung interactions and with contrasting clinical phenotypes. A high gut-lung interaction cluster, characterized by lung Pseudomonas, gut Bacteroides, and gut Saccharomyces, is associated with increased exacerbations and greater radiological and overall bronchiectasis severity, whereas the low gut-lung interaction cluster demonstrates an overrepresentation of lung commensals, including Prevotella, Fusobacterium, and Porphyromonas with gut Candida. The lung Pseudomonas-gut Bacteroides relationship, observed in the high gut-lung interaction bronchiectasis cluster, was validated in a murine model of lung Pseudomonas aeruginosa infection. This interaction was abrogated after antibiotic (imipenem) pretreatment in mice confirming the relevance and therapeutic potential of targeting the gut microbiome to influence the gut-lung axis. Metagenomics in a subset of individuals with bronchiectasis corroborated our findings from targeted analyses. Conclusions: A dysregulated gut-lung axis, driven by lung Pseudomonas, associates with poorer clinical outcomes in bronchiectasis.


Subject(s)
Bronchiectasis , Microbiota , Animals , Mice , Prospective Studies , RNA, Ribosomal, 16S/genetics , Lung/microbiology , Bronchiectasis/drug therapy
5.
Inorg Chem ; 60(22): 17276-17287, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34709031

ABSTRACT

A series of activated vinyl azoles was hydrophosphinated in the presence of a chiral palladacycle catalyst under mild conditions to give enantioenriched phosphine azoles with moderate enantioselectivities and yields. The racemic phosphine azoles were transformed into eleven novel chelating phosphine-N-heterocyclic carbene (NHC) platinum complexes. The drug efficacies of nine selected phosphine-NHC platinum(II) chlorides in two cancer cell lines (MKN74 and MCF7) were evaluated, and two were found to exhibit activities comparable to that of cisplatin.


Subject(s)
Antineoplastic Agents/pharmacology , Chelating Agents/pharmacology , Methane/analogs & derivatives , Organoplatinum Compounds/pharmacology , Phosphines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Chelating Agents/chemical synthesis , Chelating Agents/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Methane/chemistry , Methane/pharmacology , Molecular Structure , Organoplatinum Compounds/chemistry , Phosphines/chemistry , Tumor Cells, Cultured
6.
Mol Cancer ; 18(1): 51, 2019 03 30.
Article in English | MEDLINE | ID: mdl-30925918

ABSTRACT

The tumor microenvironment is a complex and dynamic cellular community comprising the tumor epithelium and various tumor-supporting cells such as immune cells, fibroblasts, immunosuppressive cells, adipose cells, endothelial cells, and pericytes. The interplay between the tumor microenvironment and tumor cells represents a key contributor to immune evasiveness, physiological hardiness and the local and systemic invasiveness of malignant cells. Nuclear receptors are master regulators of physiological processes and are known to play pro-/anti-oncogenic activities in tumor cells. However, the actions of nuclear receptors in tumor-supporting cells have not been widely studied. Given the excellent druggability and extensive regulatory effects of nuclear receptors, understanding their biological functionality in the tumor microenvironment is of utmost importance. Therefore, the present review aims to summarize recent evidence about the roles of nuclear receptors in tumor-supporting cells and their implications for malignant processes such as tumor proliferation, evasion of immune surveillance, angiogenesis, chemotherapeutic resistance, and metastasis. Based on findings derived mostly from cell culture studies and a few in vivo animal cancer models, the functions of VDR, PPARs, AR, ER and GR in tumor-supporting cells are relatively well-characterized. Evidence for other receptors, such as RARß, RORγ, and FXR, is limited yet promising. Hence, the nuclear receptor signature in the tumor microenvironment may harbor prognostic value. The clinical prospects of a tumor microenvironment-oriented cancer therapy exploiting the nuclear receptors in different tumor-supporting cells are also encouraging. The major challenge, however, lies in the ability to develop a highly specific drug delivery system to facilitate precision medicine in cancer therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Stromal Cells/drug effects , Tumor Microenvironment/drug effects , Animals , Humans , Neoplasms/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction , Stromal Cells/metabolism
7.
Mutat Res Rev Mutat Res ; 777: 29-51, 2018.
Article in English | MEDLINE | ID: mdl-30115429

ABSTRACT

In recent years, the paradigm that genomic abnormalities in cancer cells arise through progressive accumulation of mutational events has been challenged by the discovery of single catastrophic events. One such phenomenon termed chromothripsis, involving massive chromosomal rearrangements arising all at once, has emerged as a major mutational game changer. The strong interest in this process stems from its widespread association with a range of cancer types and its potential as a mutational driver. In this review, we first describe chromothripsis detection and incidence in cancers. We then explore recently proposed underlying mechanistic origins, which explain the curious observations of the highly localised nature of the rearrangements on chromothriptic chromosomes. Detection of chromothriptic patterns following incorporation of single chromosomes into micronuclei or following telomere attrition have greatly contributed to our understanding of the reasons behind this chromosomal restriction. These underlying cellular events have been found to be participants in the tumourigenic process, strongly suggesting a potential role for chromothripsis in cancer development. Thus, we discuss potential implications of chromothripsis for cancer progression and therapy.


Subject(s)
Chromothripsis , Mutation , Neoplasms/genetics , Animals , DNA Damage , Humans , Neoplasms/etiology , Polymorphism, Single Nucleotide , Telomere , Translocation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...