Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 145(7): 2361-2377, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35084461

ABSTRACT

Longer glucan chains tend to precipitate. Glycogen, by far the largest mammalian glucan and the largest molecule in the cytosol with up to 55 000 glucoses, does not, due to a highly regularly branched spherical structure that allows it to be perfused with cytosol. Aberrant construction of glycogen leads it to precipitate, accumulate into polyglucosan bodies that resemble plant starch amylopectin and cause disease. This pathology, amylopectinosis, is caused by mutations in a series of single genes whose functions are under active study toward understanding the mechanisms of proper glycogen construction. Concurrently, we are characterizing the physicochemical particularities of glycogen and polyglucosans associated with each gene. These genes include GBE1, EPM2A and EPM2B, which respectively encode the glycogen branching enzyme, the glycogen phosphatase laforin and the laforin-interacting E3 ubiquitin ligase malin, for which an unequivocal function is not yet known. Mutations in GBE1 cause a motor neuron disease (adult polyglucosan body disease), and mutations in EPM2A or EPM2B a fatal progressive myoclonus epilepsy (Lafora disease). RBCK1 deficiency causes an amylopectinosis with fatal skeletal and cardiac myopathy (polyglucosan body myopathy 1, OMIM# 615895). RBCK1 is a component of the linear ubiquitin chain assembly complex, with unique functions including generating linear ubiquitin chains and ubiquitinating hydroxyl (versus canonical amine) residues, including of glycogen. In a mouse model we now show (i) that the amylopectinosis of RBCK1 deficiency, like in adult polyglucosan body disease and Lafora disease, affects the brain; (ii) that RBCK1 deficiency glycogen, like in adult polyglucosan body disease and Lafora disease, has overlong branches; (iii) that unlike adult polyglucosan body disease but like Lafora disease, RBCK1 deficiency glycogen is hyperphosphorylated; and finally (iv) that unlike laforin-deficient Lafora disease but like malin-deficient Lafora disease, RBCK1 deficiency's glycogen hyperphosphorylation is limited to precipitated polyglucosans. In summary, the fundamental glycogen pathology of RBCK1 deficiency recapitulates that of malin-deficient Lafora disease. Additionally, we uncover sex and genetic background effects in RBCK1 deficiency on organ- and brain-region specific amylopectinoses, and in the brain on consequent neuroinflammation and behavioural deficits. Finally, we exploit the portion of the basic glycogen pathology that is common to adult polyglucosan body disease, both forms of Lafora disease and RBCK1 deficiency, namely overlong branches, to show that a unified approach based on downregulating glycogen synthase, the enzyme that elongates glycogen branches, can rescue all four diseases.


Subject(s)
Glycogen Storage Disease Type IV , Lafora Disease , Ubiquitin-Protein Ligases , Animals , Down-Regulation , Glucans/metabolism , Glycogen/metabolism , Glycogen Storage Disease , Glycogen Synthase/genetics , Glycogen Synthase/metabolism , Lafora Disease/genetics , Lafora Disease/pathology , Mice , Myoclonic Epilepsies, Progressive , Nervous System Diseases , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Ubiquitin/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
2.
J Neurochem ; 157(6): 1897-1910, 2021 06.
Article in English | MEDLINE | ID: mdl-32892347

ABSTRACT

Mammalian glycogen chain lengths are subject to complex regulation, including by seven proteins (protein phosphatase-1 regulatory subunit 3, PPP1R3A through PPP1R3G) that target protein phosphatase-1 (PP1) to glycogen to activate the glycogen chain-elongating enzyme glycogen synthase and inactivate the chain-shortening glycogen phosphorylase. Lafora disease is a fatal neurodegenerative epilepsy caused by aggregates of long-chained, and as a result insoluble, glycogen, termed Lafora bodies (LBs). We previously eliminated PPP1R3C from a Lafora disease mouse model and studied the effect on LB formation. In the present work, we eliminate and study the effect of absent PPP1R3D. In the interim, brain cell type levels of all PPP1R3 genes have been published, and brain cell type localization of LBs clarified. Integrating these data we find that PPP1R3C is the major isoform in most tissues including brain. In the brain, PPP1R3C is expressed at 15-fold higher levels than PPP1R3D in astrocytes, the cell type where most LBs form. PPP1R3C deficiency eliminates ~90% of brain LBs. PPP1R3D is quantitatively a minor isoform, but possesses unique MAPK, CaMK2 and 14-3-3 binding domains and appears to have an important functional niche in murine neurons and cardiomyocytes. In neurons, it is expressed equally to PPP1R3C, and its deficiency eliminates ~50% of neuronal LBs. In heart, it is expressed at 25% of PPP1R3C where its deficiency eliminates ~90% of LBs. This work studies the role of a second (PPP1R3D) of seven PP1 subunits that regulate the structure of glycogen, toward better understanding of brain glycogen metabolism generally, and in Lafora disease.


Subject(s)
Disease Models, Animal , Lafora Disease/metabolism , Myocardium/metabolism , Neurons/metabolism , Protein Phosphatase 1/deficiency , Animals , Brain/metabolism , Brain/pathology , Female , Glycogen/metabolism , Humans , Lafora Disease/genetics , Lafora Disease/pathology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Myocardium/pathology , Neurons/pathology , Protein Phosphatase 1/genetics
3.
Cell Rep ; 27(5): 1334-1344.e6, 2019 04 30.
Article in English | MEDLINE | ID: mdl-31042462

ABSTRACT

Lafora disease (LD) and adult polyglucosan body disease (APBD) are glycogen storage diseases characterized by a pathogenic buildup of insoluble glycogen. Mechanisms causing glycogen insolubility are poorly understood. Here, in two mouse models of LD (Epm2a-/- and Epm2b-/-) and one of APBD (Gbe1ys/ys), the separation of soluble and insoluble muscle glycogen is described, enabling separate analysis of each fraction. Total glycogen is increased in LD and APBD mice, which, together with abnormal chain length and molecule size distributions, is largely if not fully attributed to insoluble glycogen. Soluble glycogen consists of molecules with distinct chain length distributions and differential corresponding solubility, providing a mechanistic link between soluble and insoluble glycogen in vivo. Phosphorylation states differ across glycogen fractions and mouse models, demonstrating that hyperphosphorylation is not a basic feature of insoluble glycogen. Lastly, model-specific variances in protein and activity levels of key glycogen synthesis enzymes suggest uninvestigated regulatory mechanisms.


Subject(s)
Glycogen Storage Disease/metabolism , Glycogen/metabolism , Lafora Disease/metabolism , Muscle, Skeletal/metabolism , Nervous System Diseases/metabolism , Animals , Female , Glycogen/chemistry , Glycogen Debranching Enzyme System/genetics , Glycogen Storage Disease/genetics , HEK293 Cells , Humans , Lafora Disease/genetics , Male , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Muscle, Skeletal/pathology , Nervous System Diseases/genetics , Phosphorylation , Solubility
4.
Nat Commun ; 8(1): 1245, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29093438

ABSTRACT

Almost all genomic studies of breast cancer have focused on well-established tumours because it is technically challenging to study the earliest mutational events occurring in human breast epithelial cells. To address this we created a unique dataset of epithelial samples ductoscopically obtained from ducts leading to breast carcinomas and matched samples from ducts on the opposite side of the nipple. Here, we demonstrate that perturbations in mRNA abundance, with increasing proximity to tumour, cannot be explained by copy number aberrations. Rather, we find a possibility of field cancerization surrounding the primary tumour by constructing a classifier that evaluates where epithelial samples were obtained relative to a tumour (cross-validated micro-averaged AUC = 0.74). We implement a spectral co-clustering algorithm to define biclusters. Relating to over-represented bicluster pathways, we further validate two genes with tissue microarrays and in vitro experiments. We highlight evidence suggesting that bicluster perturbation occurs early in tumour development.


Subject(s)
Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Epithelial Cells/metabolism , Genome, Human/genetics , RNA, Messenger/metabolism , Transcriptome/genetics , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Cell Cycle Proteins/genetics , Comparative Genomic Hybridization , Epithelial Cells/pathology , Female , Gene Expression Profiling , Genomics , Humans , MCF-7 Cells , Mutation , Neoplasm Grading , Oligonucleotide Array Sequence Analysis , RNA-Binding Proteins/genetics
5.
J Biol Chem ; 291(34): 17557-68, 2016 08 19.
Article in English | MEDLINE | ID: mdl-27325696

ABSTRACT

The Hedgehog (Hh) pathway is a highly conserved signaling cascade crucial for cell fate determination during embryogenesis. Response to the Hh ligands is mediated by the receptor Patched-1 (Ptch1), a 12-pass transmembrane glycoprotein. Despite its essential role in Hh signaling and its activity as a tumor suppressor, Ptch1 remains largely uncharacterized. We demonstrate here that Ptch1 binds to itself to form oligomeric structures. Oligomerization is mediated by two distinct, structurally disordered, intracellular domains spanning amino acids 584-734 ("middle loop") and 1162-1432 (C terminus). However, oligomerization is not required for Ptch1-dependent regulation of the canonical Hh pathway operating through Smo. Expression of a mutant protein that deletes both regions represses the Hh pathway and responds to the addition of Hh ligand independent of its inability to bind other factors such as Smurf2. Additionally, deletion of the cytoplasmic middle loop domain generates a Ptch1 mutant that, despite binding to Hh ligand, constitutively suppresses Hh signaling and increases the length of primary cilia. Constitutive activity because of deletion of this region is reversed by further deletion of specific sequences in the cytoplasmic C-terminal domain. These data reveal an interaction between the cytoplasmic domains of Ptch1 and that these domains modulate Ptch1 activity but are not essential for regulation of the Hh pathway.


Subject(s)
Hedgehog Proteins/metabolism , Patched-1 Receptor/metabolism , Signal Transduction/physiology , Animals , Cilia/genetics , Cilia/metabolism , HEK293 Cells , Hedgehog Proteins/genetics , Humans , Mice , Mice, Knockout , Patched-1 Receptor/genetics , Protein Domains , Protein Structure, Secondary , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...