Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(3): e92714, 2014.
Article in English | MEDLINE | ID: mdl-24664419

ABSTRACT

BACKGROUND: Reciprocal interactions between epithelium and stroma play vital roles for prostate cancer development and progression. Enhanced secretions of cytokines and growth factors by cancer associated fibroblasts in prostate tumors create a favorable microenvironment for cancer cells to grow and metastasize. Our previous work showed that the progesterone receptor (PR) was expressed specifically in prostate stromal fibroblasts and smooth muscle cells. However, the expression levels of PR and its impact to tumor microenvironment in prostate tumors are poorly understood. METHODS: Immunohistochemistry assays are applied to human prostate tissue biopsies. Cell migration, invasion and proliferation assays are performed using human prostate cells. Real-time PCR and ELISA are applied to measure gene expression at molecular levels. RESULTS: Immunohistochemistry assays showed that PR protein levels were decreased in cancer associated stroma when compared with paired normal prostate stroma. Using in vitro prostate stromal cell models, we showed that conditioned media collected from PR positive stromal cells inhibited prostate cancer cell migration and invasion, but had minor suppressive impacts on cancer cell proliferation. PR suppressed the secretion of stromal derived factor-1 (SDF-1) and interlukin-6 (IL-6) by stromal cells independent to PR ligands. Blocking PR expression by siRNA or supplementation of exogenous SDF-1 or IL-6 to conditioned media from PR positive stromal cells counteracted the inhibitory effects of PR to cancer cell migration and invasion. CONCLUSIONS: Decreased expression of the PR in cancer associated stroma may contribute to the elevated SDF-1 and IL-6 levels in prostate tumors and enhance prostate tumor progression.


Subject(s)
Cell Movement , Gene Expression Regulation, Neoplastic , Prostate/pathology , Prostatic Neoplasms/pathology , Receptors, Progesterone/metabolism , Stromal Cells/metabolism , Aged , Aged, 80 and over , Cell Line, Tumor , Chemokine CXCL12/metabolism , Humans , Interleukin-6/metabolism , Male , Middle Aged , Neoplasm Invasiveness , Prostatic Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...