Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Cell ; 20(1): e13288, 2021 01.
Article in English | MEDLINE | ID: mdl-33336885

ABSTRACT

Morphological change is an explicit characteristic of cell senescence, but the underlying mechanisms remains to be addressed. Here, we demonstrated, after a survey of various actin-binding proteins, that the post-translational up-regulation of cofilin-1 was essential for the reduced rate of actin depolymerization morphological enlargement in senescent cells. Additionally, up-regulated cofilin-1 mainly existed in the serine-3 phosphorylated form, according to the 2D gel immunoblotting assay. The up-regulation of cofilin-1 was also detected in aged mammalian tissues. The over-expression of wild-type cofilin-1 and constitutively phosphorylated cofilin-1 promoted cell senescence with an increased cell size. Additionally, senescent phenotypes were also reduced by knockdown of total cofilin-1, which led to a decrease in phosphorylated cofilin-1. The senescence induced by the over-expression of cofilin-1 was dependent on p27Kip1 , but not on the p53 and p16INK4 expressions. The knockdown of p27Kip1 alleviated cell senescence induced by oxidative stress or replicative stress. We also found that the over-expression of cofilin-1 induced the expression of p27Kip1 through transcriptional suppression of the transcriptional enhancer factors domain 1 (TEAD1) transcription factor. The TEAD1 transcription factor played a transrepressive role in the p27Kip1  gene promoter, as determined by the promoter deletion reporter gene assay. Interestingly, the down-regulation of TEAD1 was accompanied by the up-regulation of cofilin-1 in senescence. The knockdown and restoration of TEAD1 in young cells and old cells could induce and inhibit p27Kip1 and senescent phenotypes, respectively. Taken together, the current data suggest that cofilin-1/TEAD1/p27Kip1 signaling is involved in senescence-related morphological change and growth arrest.


Subject(s)
Cofilin 1/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Cellular Senescence , Humans , Up-Regulation
2.
Theranostics ; 7(3): 647-663, 2017.
Article in English | MEDLINE | ID: mdl-28255357

ABSTRACT

Triple-negative breast cancer (TNBC) represents approximately 20% of all breast cancers and appears resistance to conventional cytotoxic chemotherapy, demonstrating a particularly poor prognosis and a significantly worse clinical outcome than other types of cancer. Suicide gene therapy has been used for the in vivo treatment of various solid tumors in recent clinical trials. In tumor microenvironment, STAT3/NF-κB pathways are constitutively activated in stromal cells as well as in cancer stem cells (CSCs). In this study, we have cloned a novel STAT3/NF-κB-based reporter system to drive the expression of herpes simplex virus thymidine kinase (HSV-TK) against breast cancer. Lentiviral vector expressing HSV-TK under the regulation of STAT3/NF-κB fused response element was developed. In this setting, we exploited the constitutive STAT3/NF-κB activation in tumors to achieve higher transgene expression than that driven by a constitutively active CMV promotor in vivo. An orthotropic MDA-MB-231 triple negative breast cancer mouse model was used for evaluating the feasibility of STAT3-NF-κB-TK/GCV suicide gene therapy system. The basal promoter activity of Lenti-CMV-TK and Lenti-STAT3-NF-κB-TK in MDA-MB-231 cells was compared by 3H-FEAU uptake assay. The Lenti-CMV-TK showed ~5 fold higher 3H-FEAU uptake then Lenti -STAT3-NF-κB-TK. In clonogenic assay, cells expressing Lenti-CMV-TK were 2-fold more sensitive to GCV than Lenti-STAT3-NF-κB-TK transduced cells. In vitro effect of STAT3-NF-κB-induced transgene expression was determined by 10ng/mL TNF-α induction and confirmed by western blot analysis and DsRedm fluorescent microscopy. In vivo evaluation of therapeutic effect by bioluminescence and [18F]FHBG microPET imaging indicated that Lenti-STAT3-NF-κB-TK showed more tumor growth retardation than Lenti-CMV-TK when GCV (20 mg/kg) was administered. The invasiveness and expression of cancer stem cell markers were both decreased after STAT3/NF-κB-regulated HSV-TK/GCV therapy. Moreover, STAT3/NF-κB signaling targeting could further sensitize tumor cells to cisplatin. This study successfully established a theranositic approach to treat triple-negative breast cancer via STAT3-NF-κB responsive element-driven suicide gene therapy. This platform may also be an alternative strategy to handle with drug-resistant cancer cells.


Subject(s)
Antineoplastic Agents/administration & dosage , Ganciclovir/administration & dosage , Genetic Therapy/methods , NF-kappa B p50 Subunit/metabolism , STAT3 Transcription Factor/metabolism , Thymidine Kinase/metabolism , Triple Negative Breast Neoplasms/therapy , Animals , Cisplatin/administration & dosage , Disease Models, Animal , Drug Resistance , Genetic Vectors , Lentivirus/genetics , Mice , NF-kappa B p50 Subunit/genetics , STAT3 Transcription Factor/genetics , Thymidine Kinase/genetics , Transduction, Genetic , Treatment Outcome
3.
Transl Stroke Res ; 8(3): 244-256, 2017 06.
Article in English | MEDLINE | ID: mdl-27910074

ABSTRACT

Photochemically induced cerebral ischemia is an easy-manipulated, reproducible, relatively noninvasive, and lesion controllable model for translational study of ischemic stroke. In order to longitudinally investigate the characterization of the model, magnetic resonance imaging, 18F-2-deoxy-glucose positron emission tomography, fluorescence, and bioluminescence imaging system were performed in correlation with triphenyl tetrazolium chloride (TTC), hematoxylin-eosin staining, and immunohistochemistry examinations of glial fibrillary acidic protein, CD68, NeuN, von willebrand factor, and α-smooth muscle actin in the infarct zone. The results suggested that the number of inflammatory cells, astrocytes, and neovascularization significantly elevated in peri-infarct region from day 7 and a belt of macrophage/microglial and astrocytes was formed surrounding infarct lesion at day 14. Both vasogenic and cytotoxic edema, as well as blood brain-barrier leakage, occurred since day 1 after stroke induction and gradually attenuated with time. Numerous cells other than neuronal cells infiltrated into infarct lesion, which resulted in no visible TTC negative regional existence at day 14. Furthermore, recovery of cerebral blood flow and glucose utilization in peri-infarct zone were noted and more remarkably than that in infarct core following the stroke progression. In conclusion, these characterizations may be highly beneficial to the development of therapeutic strategies for ischemic stroke.


Subject(s)
Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain/metabolism , Brain/pathology , Stroke/metabolism , Animals , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Cerebrovascular Circulation/physiology , Disease Models, Animal , Magnetic Resonance Imaging/methods , Male , Neurons/metabolism , Photochemical Processes , Positron-Emission Tomography/methods , Rats, Sprague-Dawley , Stroke/pathology
4.
Oncotarget ; 6(11): 8663-75, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25796627

ABSTRACT

Cancer stem cells (CSCs) are usually tolerant to chemotherapy and radiotherapy and associated with tumor relapse. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor (HDACI), is currently being used in clinical trials of lung cancer. However, SAHA facilitates the formation of induced pluripotent stem cells from somatic cells. We hypothesized that SAHA would mediate the CSCs properties and subsequently confer a more malignant phenotype in lung cancer. Transfected H1299 lung cancer cells, which stably expresses a triple fused reporter gene (DsRedm-Fluc-tTKsr39) under the control of CMV promoter was used to establish a xenograft mouse model. After the treatment of SAHA, H1299 cell line and tumor xenografts were sorted by fluorescence-activated cell sorting (FACS) based on aldehyde dehydrogenase (ALDH) activity. We found that SAHA could suppress the growth of xenografted H1299 tumors with decreased proportion of ALDHbr lung cancer cells indicating that SAHA may target CSCs. However, SAHA significantly enhanced the tumor initiating capacity and the expression of malignant genes such as KCNMA1, MORF4L2 and ASPM in the remaining living ALDHbr cells. These findings suggested that SAHA treatment created a more drug-resistant state in residual ALDHbr cells. The in vivo imaging technique may facilitate searching and characterization of CSCs.


Subject(s)
Adenocarcinoma/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/biosynthesis , Lung Neoplasms/drug therapy , Neoplasm Proteins/biosynthesis , Nerve Tissue Proteins/biosynthesis , Transcription Factors/biosynthesis , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Aldehyde Dehydrogenase/analysis , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Self Renewal/drug effects , Epithelial-Mesenchymal Transition/drug effects , Flow Cytometry , Genes, Reporter , Heterografts , Histone Deacetylase Inhibitors/therapeutic use , Humans , Hydroxamic Acids/therapeutic use , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Proteins/genetics , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/enzymology , Nerve Tissue Proteins/genetics , Transcription Factors/genetics , Transfection , Vorinostat
5.
IEEE Trans Med Imaging ; 34(6): 1403-13, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25700440

ABSTRACT

To improve the quantitative accuracy of linear attenuation coefficients measured by computed tomography (CT), we used a single scatter model to estimate the Compton scatter distribution and then a polychromatic image reconstruction algorithm, namely the iterative maximum-likelihood polychromatic algorithm for CT (IMPACT), was implemented to include scatter correction (SC). To perform the IMPACT, the X-ray spectra of a tube were estimated via an expectation-maximization (EM) algorithm with SC. To test the accuracy of the estimated spectra, the projection images of cubic phantoms containing different depths of polymethylmethacrylate (PMMA) were acquired. The percentage of root mean square errors (%RMSE) of the measured transmission data and calculated transmission values were used to evaluate the accuracy of the estimated spectra. In addition, a hydroxylapatite (HA) phantom was used to study streak artifacts and evaluate the accuracy of the linear attenuation coefficients estimated using the IMPACT with SC. The %RMSE of the EM-with-SC estimated spectra were all lower than 1% and were also smaller than that without SC. The error in the quantification of the HA linear attenuation was only about 3% after SC. Our results showed that the quantitative accuracy of the linear attenuation coefficients measured with a cone beam CT was improved when the IMPACT with SC was used.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Phantoms, Imaging
6.
Neuroimage ; 63(3): 1273-84, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22892332

ABSTRACT

Positron emission tomography (PET) can be used to quantify physiological parameters. However to perform quantification requires that an input function is measured, namely a plasma time activity curve (TAC). Image-derived input functions (IDIFs) are attractive because they are noninvasive and nearly no blood loss is involved. However, the spatial resolution and the signal to noise ratio (SNR) of PET images are low, which degrades the accuracy of IDIFs. The objective of this study was to extract accurate input functions from microPET images with zero or one plasma sample using wavelet packet based sub-band decomposition independent component analysis (WP SDICA). Two approaches were used in this study. The first was the use of simulated dynamic rat images with different spatial resolutions and SNRs, and the second was the use of dynamic images of eight Sprague-Dawley rats. We also used a population-based input function and a fuzzy c-means clustering approach and compared their results with those obtained by our method using normalized root mean square errors, area under curve errors, and correlation coefficients. Our results showed that the accuracy of the one-sample WP SDICA approach was better than the other approaches using both simulated and realistic comparisons. The errors in the metabolic rate, as estimated by one-sample WP SDICA, were also the smallest using our approach.


Subject(s)
Algorithms , Blood/diagnostic imaging , Image Processing, Computer-Assisted/methods , Positron-Emission Tomography/methods , Animals , Cluster Analysis , Fluorodeoxyglucose F18 , Fuzzy Logic , Male , Neural Networks, Computer , Radiopharmaceuticals , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...