Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Cell Res ; 438(1): 114036, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38614421

ABSTRACT

Ovarian cancer is the leading cause of gynecologic cancer death. Among the most innovative anti-cancer approaches, the genetic concept of synthetic lethality is that mutations in multiple genes work synergistically to effect cell death. Previous studies found that although vaccinia-related kinase-1 (VRK1) associates with DNA damage repair proteins, its underlying mechanisms remain unclear. Here, we found high VRK1 expression in ovarian tumors, and that VRK1 depletion can significantly promote apoptosis and cell cycle arrest. The effect of VRK1 knockdown on apoptosis was manifested by increased DNA damage, genomic instability, and apoptosis, and also blocked non-homologous end joining (NHEJ) by destabilizing DNA-PK. Further, we verified that VRK1 depletion enhanced sensitivity to a PARP inhibitor (PARPi), olaparib, promoting apoptosis through DNA damage, especially in ovarian cancer cell lines with high VRK1 expression. Proteins implicated in DNA damage responses are suitable targets for the development of new anti-cancer therapeutic strategies, and their combination could represent an alternative form of synthetic lethality. Therefore, normal protective DNA damage responses are impaired by combining olaparib with elimination of VRK1 and could be used to reduce drug dose and its associated toxicity. In summary, VRK1 represents both a potential biomarker for PARPi sensitivity, and a new DDR-associated therapeutic target, in ovarian cancer.


Subject(s)
DNA Damage , DNA-Activated Protein Kinase , Intracellular Signaling Peptides and Proteins , Ovarian Neoplasms , Protein Serine-Threonine Kinases , Female , Humans , Apoptosis/drug effects , Cell Line, Tumor , DNA Damage/drug effects , DNA-Activated Protein Kinase/metabolism , DNA-Activated Protein Kinase/genetics , Gene Expression Regulation, Neoplastic/drug effects , Genomic Instability/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics
2.
J Cell Mol Med ; 28(3): e18104, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183356

ABSTRACT

Alpha-2-Glycoprotein 1, Zinc-binding (AZGP1, ZAG) is a secreted protein that is synthesized by adipocytes and epithelial cells; it is downregulated in several malignancies such as breast, prostate, liver and lung cancers. However, its function remains unclear in cholangiocarcinoma (CCA). Here, we evaluated the impact AZGP1 in CCA using Gene Expression Omnibus (GEO) and GEPIA. In addition, we analysed AZGP1 expression using quantitative reverse transcription PCR and western blotting. Expression of AZGP1 was nearly deficient in CCA patients and cell lines and was associated with poor prognosis. AZGP1 overexpression upregulated apoptosis markers. Co-immunoprecipitation experiments showed that AZGP1 interacts with tripartite motif-containing protein 25 (TRIM25), and tissue microarray and bioinformatic analysis showed that AZGP1 is negatively correlated with TRIM25 expression in CCA. Thereafter, TRIM25 knockdown led to AZGP1 upregulation and induced cancer cell apoptosis. TRIM25 targets AZGP1 for degradation by catalysing its ubiquitination. AZGP1 overexpression significantly suppressed tumour growth in a xenograft mouse model. This study findings suggest that AZGP1 is a potential therapeutic target or a diagnostic biomarker for treating patients with CCA.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Male , Humans , Animals , Mice , Cholangiocarcinoma/metabolism , Cell Transformation, Neoplastic , Bile Ducts, Intrahepatic/metabolism , Bile Duct Neoplasms/metabolism , Apoptosis , Cell Line, Tumor , Cell Proliferation/genetics , Tripartite Motif Proteins , Transcription Factors , Ubiquitin-Protein Ligases , Zn-Alpha-2-Glycoprotein
3.
Med Oncol ; 40(12): 348, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37935810

ABSTRACT

Colorectal cancer (CRC) is one of the highest mortality rates worldwide, and various studies reported to the occurrence of CRC. In particular, the Wnt/ß-catenin pathway is known to be a major factor in the progression of CRC and ß-catenin involved in the expression of its downstream target genes. We searched for TCOF1 through sliver staining to identify a new binding partner for ß-catenin and to investigate the role of the gene involved in CRC. Treacle Ribosome Biogenesis Factor 1 (TCOF1) is a nucleolar protein that regulates the transcription of ribosomal DNA (rDNA). There are many reports of genetic studies on TCOF1 mutations and defects, but its function in CRC remains unknown. We demonstrated that TCOF1 and ß-catenin expression in tissue microarray (TMA) containing 101 individual CRC and 17 adjacent normal samples. Additionally, the effects of TCOF1 knockdown or overexpression were examined proliferation, colony formation assay, western blot, and quantitative real-time PCR (qRT-PCR). TCOF1 knockdown or overexpression regulates cell proliferation about three-fold and the phosphorylation of ß-catenin, cyclin D1 expression levels. Besides, we discovered the mechanism through which TCOF1 regulates the stability of ß-catenin was involved in degradation through proteasome using ubiquitination assay. Finally, we confirmed the interaction of TCOF1 with the tankyrase inhibitor NVP-TNKS656, which destabilizes ß-catenin through in vitro and in vivo. Collectively, this study shows that significantly correlation was observed that TCOF1 and ß-catenin were risk factor for tumor progression. The stability of ß-catenin via regulating TCOF1 expression could be a potential strategy for therapeutic with CRC.


Subject(s)
Colorectal Neoplasms , beta Catenin , Humans , beta Catenin/genetics , beta Catenin/metabolism , Cell Line, Tumor , Colorectal Neoplasms/pathology , Wnt Signaling Pathway/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism
4.
Phys Rev B ; 982018.
Article in English | MEDLINE | ID: mdl-30997442

ABSTRACT

We present simulations of quantum transport in graphene p-n junctions (pnJs) in which moiré superlattice potentials are incorporated to demonstrate the interplay between pnJs and moiré superlattice potentials. It is shown that the longitudinal and Hall resistivity maps can be strongly modulated by the pnJ profile, junction height, and moiré potentials. Device resistance measurements are subsequently performed on graphene/hexagonal- boron-nitride heterostructure samples with accurate alignment of crystallographic orientations to complement and support the simulation results.

SELECTION OF CITATIONS
SEARCH DETAIL
...