Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 13: 1045239, 2022.
Article in English | MEDLINE | ID: mdl-36544872

ABSTRACT

In this study, we determined the short-term effects of ozone exposure on the growth and accumulation of bioactive compounds in red lettuce leaves grown in a controlled environment plant factory with artificial light, also known as a vertical farm. During cultivation, twenty-day-old lettuce (Lactuca sativa L. var. Redfire) seedlings were exposed to 100 and 200 ppb of ozone concentrations for 72 h. To find out how plants react to ozone and light, complex treatments were done with light and ozone concentrations (100 ppb; 16 h and 200 ppb; 24 h). Ozone treatment with 100 ppb did not show any significant difference in shoot fresh weight compared to that of the control, but the plants exposed to the 200 ppb treatment showed a significant reduction in fresh weight by 1.3 fold compared to the control. The expression of most genes in lettuce plants exposed to 100 and 200 ppb of ozone increased rapidly after 0.5 h and showed a decreasing trend after reaching a peak. Even when exposed to a uniform ozone concentration, the pattern of accumulating bioactive compounds such as total phenolics, antioxidant capacity and total flavonoids varied based on leaf age. At a concentration of 200 ppb, a greater accumulation was found in the third (older) leaf than in the fourth leaf (younger). The anthocyanin of lettuce plants subjected to 100 and 200 ppb concentrations increased continuously for 48 h. Our results suggest that ozone control is a novel method that can effectively increase the accumulation of bioactive compounds in lettuce in a plant factory.

2.
Plants (Basel) ; 11(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35807684

ABSTRACT

The application of ultraviolet-B (UV-B) irradiation to supplement visible light as an elicitor to increase bioactive compounds under controlled conditions is increasing. This study aimed to evaluate the effects of UV-B dose and wavelength region (280−300 and 300−320 nm) on the morphological, physiological, and biochemical responses of canola plants (Brassica napus L.). Canola plants (17 days after sowing) were subjected to various UV-B intensities (i.e., 0.3, 0.6, and 0.9 W m−2) and were divided into cut and non-cut treatments for each UV treatment. Plant growth parameters exhibited different trends based on the treated UV irradiation intensity. Plant growth gradually decreased as the UV irradiation intensity and exposure time increased. Despite the same UV irradiation intensity, plant response varied significantly depending on the presence or absence of a short-wavelength cut filter (<300 nm). Canola plants suffered more leaf damage in nonfilter treatments containing shorter wavelengths (280−300 nm). UV treatment effectively activates the expression of secondary metabolite biosynthetic genes, differing depending on the UV irradiation intensity. Our results suggest that both UV irradiation intensity and wavelength should be considered when enhancing antioxidant phytochemicals without inhibiting plant growth in a plant factory with artificial light.

3.
Front Plant Sci ; 12: 786555, 2021.
Article in English | MEDLINE | ID: mdl-35003173

ABSTRACT

This study aimed to evaluate short-duration (24 h) UV-B irradiation as a preharvest abiotic stressor in canola plants. Moreover, we quantified the expression levels of genes related to bioactive compounds synthesis in response to UV-B radiation. Canola seedlings were cultivated in a plant factory under artificial light (200 µmol m-2 s-1 photosynthetic photon flux density; white LED lamps; 16 h on/8 h off), 25°C/20°C daytime/nighttime air temperature, and 70% relative humidity. Eighteen days after sowing, the seedlings were subjected to supplemental UV-B treatment. The control plants received no UV-B irradiation. The plants were exposed to 3, 5, or 7 W m-2 UV-B irradiation. There were no significant differences in shoot fresh weight between the UV-B-irradiated and control plants. With increasing UV-B irradiation intensity and exposure time, the H2O2 content gradually increased, the expression levels of genes related to photosynthesis downregulated, and phenylpropanoid and flavonoid production, and also total phenolic, flavonoid, antioxidant, and anthocyanin concentrations were significantly enhanced. The genes related to secondary metabolite biosynthesis were immediately upregulated after UV-B irradiation. The relative gene expression patterns identified using qRT-PCR corroborated the variations in gene expression that were revealed using microarray analysis. The time point at which the genes were induced varied with the gene location along the biosynthetic pathway. To the best of our knowledge, this is the first study to demonstrate a temporal difference between the accumulation of antioxidants and the induction of genes related to the synthesis of this compound in UV-B-treated canola plants. Our results demonstrated that short-term UV-B irradiation could augment antioxidant biosynthesis in canola without sacrificing crop yield or quality.

4.
Int J Mol Sci ; 20(19)2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31597250

ABSTRACT

Short-term abiotic stress treatment before harvest can enhance the quality of horticultural crops cultivated in controlled environments. Here, we investigated the effects of combined chilling and UV-A treatment on the accumulation of phenolic compounds in kale (Brassica oleracea var. acephala). Five-week-old plants were subjected to combined treatments (10 °C plus UV-A LED radiation at 30.3 W/m2) for 3-days, as well as single treatments (4 °C, 10 °C, or UV-A LED radiation). The growth parameters and photosynthetic rates of plants under the combined treatment were similar to those of the control, whereas UV-A treatment alone significantly increased these parameters. Maximum quantum yield (Fv/Fm) decreased and H2O2 increased in response to UV-A and combined treatments, implying that these treatments induced stress in kale. The total phenolic contents after 2- and 3-days of combined treatment and 1-day of recovery were 40%, 60%, and 50% higher than those of the control, respectively, and the phenylalanine ammonia-lyase activity also increased. Principal component analysis suggested that stress type and period determine the changes in secondary metabolites. Three days of combined stress treatment followed by 2-days of recovery increased the contents of quercetin derivatives. Therefore, combined chilling and UV-A treatment could improve the phenolic contents of leafy vegetables such as kale, without growth inhibition.


Subject(s)
Adaptation, Biological , Brassica/physiology , Brassica/radiation effects , Cold Temperature , Metabolome , Metabolomics , Ultraviolet Rays , Chlorophyll/metabolism , Chromatography, High Pressure Liquid , Energy Metabolism/radiation effects , Flavonols/metabolism , Metabolome/radiation effects , Metabolomics/methods , Phenols/metabolism , Photosynthesis/radiation effects , Reactive Oxygen Species/metabolism , Tandem Mass Spectrometry
5.
Front Plant Sci ; 10: 1042, 2019.
Article in English | MEDLINE | ID: mdl-31481968

ABSTRACT

The aim of this study was to determine the influence of two types of UV-A LEDs on the growth and accumulation of phytochemicals in kale (Brassica oleracea var. acephala). Fourteen-day-old kale seedlings were transferred to a growth chamber and cultivated for 3 weeks. The kale plants were subsequently subjected to two types of UV-A LEDs (370 and 385 nm) of 30 W/m2 for 5 days. Growth characteristics were all significantly increased in plants exposed to UV-A LEDs, especially at the 385 nm level, for which dry weight of shoots and roots were significantly increased by 2.22 and 2.5 times, respectively, at 5 days of treatment. Maximum quantum efficiency of photosystem II photochemistry (Fv/Fm ratio) began to decrease after 3 h of treatment compared to the control. The total phenolic content of plants exposed to the two types of UV-A LEDs increased by 25% at 370 nm and 42% at 385 nm at 5 days of treatment, and antioxidant capacity also increased. The two types of UV-A LEDs also induced increasing contents of caffeic acid, ferulic acid, and kaempferol. The reactive oxygen species (ROS) temporarily increased in plants exposed to the two types of UV-A LEDs after 3 h of treatment. Moreover, transcript levels of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and flavanone 3-hydroxylase (F3H) genes and PAL enzyme activity were higher in plants treated with UV-A LEDs. Our results suggested that short-term UV-A LEDs were effective in increasing growth and improving antioxidant phenolic compounds in kale, thereby representing a potentially effective strategy for enhancing the production of phytochemicals.

6.
J Biomed Opt ; 19(1): 011018, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24192777

ABSTRACT

Dengue virus (DENV) is one of the major infectious pathogens worldwide. DENV infection is a highly dynamic process. Currently, no antiviral drug is available for treating DENV-induced diseases since little is known regarding how the virus interacts with host cells during infection. Advanced molecular imaging technologies are powerful tools to understand the dynamics of intracellular interactions and molecular trafficking. This study exploited a single-virus particle tracking technology to address whether DENV interacts with autophagy machinery during the early stage of infection. Using confocal microscopy and three-dimensional image analysis, we showed that DENV triggered the formation of green fluorescence protein-fused microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) puncta, and DENV-induced autophagosomes engulfed DENV particles within 15-min postinfection. Moreover, single-virus particle tracking revealed that both DENV particles and autophagosomes traveled together during the viral infection. Finally, in the presence of autophagy suppressor 3-methyladenine, the replication of DENV was inhibited and the location of DENV particles spread in cytoplasma. In contrast, the numbers of newly synthesized DENV were elevated and the co-localization of DENV particles and autophagosomes was detected while the cells were treated with autophagy inducer rapamycin. Taken together, we propose that DENV particles interact with autophagosomes at the early stage of viral infection, which promotes the replication of DENV.


Subject(s)
Autophagy/physiology , Dengue Virus/physiology , Dengue/virology , Molecular Imaging/methods , Adenine/analogs & derivatives , Adenine/pharmacology , Autophagy/drug effects , Cell Line, Tumor , Dengue Virus/chemistry , Dengue Virus/pathogenicity , Host-Pathogen Interactions , Humans , Phagosomes , Sirolimus/pharmacology , Virion/chemistry , Virion/pathogenicity , Virion/physiology
7.
Water Sci Technol ; 67(6): 1339-44, 2013.
Article in English | MEDLINE | ID: mdl-23508160

ABSTRACT

This experiment was conducted to establish a system for detecting trace cobalt ions in water and plant tissues using a voltammetric in vivo sensor. Cyclic and stripping voltammetry was devised from hand-made, macro-type implantable three-electrode systems. The results reached micro and nano working ranges at 100 sec accumulation time. The statistical detection limit (S/N) was attained at 6.0 ng L(-1). For the in vivo application, direct assay of cobalt ions was carried out in Eichhornia crassipes (EC) deep tissue in real time with a preconcentration time of 100 s. Interfaced techniques can be interlocked with other control systems.


Subject(s)
Cobalt/analysis , Eichhornia/metabolism , Electrodiagnosis , Cobalt/metabolism , Electrodes
8.
Environ Toxicol Pharmacol ; 31(1): 51-6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21787669

ABSTRACT

A voltametric diagnosis of trace lead was performed using macro type combination sensors of fluorine-doped graphite pencil electrodes (FPE). Two pencils were used as the reference and auxiliary instead of expensive Ag/AgCl standards and Pt counters. Under optimized conditions, a square wave (SW) stripping working curve was attained at 10-70 mg/L and a micro range of 10-70 µg/L. The developed sensor was not only inexpensive but also had a fast (90-s) accumulation time. An analytical detection limit of 10 µg/L was obtained. The results were applied to an ex vivo tissue and an artificial turf.


Subject(s)
Electrochemistry/methods , Electrodes , Lead/analysis , Animals , Environmental Monitoring , Fluorine/chemistry , Humans , Indicators and Reagents , Oligochaeta , Seawater/analysis
9.
Environ Toxicol Chem ; 29(5): 1025-30, 2010 May.
Article in English | MEDLINE | ID: mdl-20821536

ABSTRACT

A trace uranium (U) detection method was developed with a handheld voltammetric analyzer that was the size of a mobile phone, with working sensors made of simple graphite pencil electrode (PE). The optimum stripping voltammetric conditions were sought, and the following results were obtained: 0.0 to 0.08 ng/L working ranges and a statistically relative standard deviation of 1.78% (RSD; n=15) at a 10.0 microg/L U spike. The experiment accumulation time used was only 150 s. Under this condition, the diagnostic detection limit approached 0.007 ng/L. The method was applied to soil of a natural rock in a radioactive mineralogy site. Earthworms that resided at this site were assayed. The method was found to be applicable in biological diagnosis or in real-time in vivo survey.


Subject(s)
Electrochemistry/instrumentation , Environmental Monitoring/instrumentation , Uranium/chemistry , Water Pollutants, Radioactive/chemistry , Animals , Electrochemistry/methods , Electrodes , Environmental Monitoring/methods , Oligochaeta , Sensitivity and Specificity
10.
Ann Biomed Eng ; 37(10): 2028-33, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19455422

ABSTRACT

The creation of a novel biosensor consisting of a fluorine-doped carbon nanotube (FCN) was explored for use in cyclic voltammetric (CV) and square-wave stripping voltammetric (SW) glucose assay. In the experiment that was carried out in this study, analytical optimum conditions were attained at the low detection limit (S/N3) of 0.6 microg/L (3.3 x 10(-9) M). In the 0.1 mg/L spike, the relative standard deviation of 0.607 (n = 15) was obtained. This was used for the diagnosis of the urine of patients with diabetes. Moreover, the catheter-type electrode (CE) can be inserted into a rat bladder through the rat's organs. Thus, it can be connected with an electrochemical analyzer that can be fitted with an interface for the real-time in vivo analysis of metabolic glucose. The developed system can be used for organ treatment, biological analysis, and in vivo control.


Subject(s)
Biosensing Techniques , Catheters, Indwelling , Diabetes Mellitus/urine , Electrochemistry/instrumentation , Glycosuria/urine , Nanotubes, Carbon/chemistry , Urinary Bladder/metabolism , Animals , Computer-Aided Design , Diabetes Mellitus/diagnosis , Electrodes , Equipment Design , Equipment Failure Analysis , Female , Fluorine/chemistry , Glucose , Male , Nanotechnology/instrumentation , Rats , Rats, Wistar , Reproducibility of Results , Sensitivity and Specificity , Urinalysis/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...