Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arthritis Care Res (Hoboken) ; 75(3): 501-508, 2023 03.
Article in English | MEDLINE | ID: mdl-35245407

ABSTRACT

OBJECTIVE: Our study aimed to investigate the association between time to incidence of radiographic osteoarthritis (OA) and magnetic resonance imaging (MRI)-based structural phenotypes proposed by the Rapid Osteoarthritis MRI Eligibility Score (ROAMES). METHODS: A retrospective cohort of 2,328 participants without radiographic OA at baseline were selected from the Osteoarthritis Initiative study. Utilizing a deep-learning model, we automatically assessed the presence of inflammatory, meniscus/cartilage, subchondral bone, and hypertrophic phenotypes from MRIs acquired at baseline and 12-, 24-, 36-, 48-, 72-, and 96-month follow-up visits. In addition to 4 structural phenotypes, we examined severe knee injury history and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain scores as time dependent. We used Cox proportional hazards regression to analyze the association between 4 structural phenotypes and radiographic OA disease-free survival, both univariate and adjusted for known risk factors including age, sex, race, body mass index, presence of Heberden's nodes, and knee malalignment. RESULTS: Inflammatory (hazard ratio [HR] 3.37 [95% confidence interval (95% CI) 2.45-4.63]), meniscus/cartilage (HR 1.55 [95% CI 1.21-1.98]), and subchondral bone (HR 1.84 [95% CI 1.63-2.09]) phenotypes were associated with time to radiographic OA at P < 0.05 when adjusted for the risk factors. Sex was a modifier of hypertrophic phenotype association with time to radiographic OA. Female participants with the hypertrophic phenotype were associated with 2.8 times higher risk of radiographic OA (95% CI 2.25-7.54) compared to male participants without the hypertrophic phenotype. CONCLUSION: Four ROAMES phenotypes may contribute to time to radiographic OA incidence and if validated could be used as a promising tool for personalized OA management.


Subject(s)
Knee Joint , Osteoarthritis, Knee , Male , Humans , Female , Knee Joint/pathology , Osteoarthritis, Knee/diagnostic imaging , Retrospective Studies , Radiography , Incidence , Magnetic Resonance Imaging/methods , Hypertrophy/complications , Hypertrophy/pathology , Phenotype , Disease Progression
2.
Sci Rep ; 11(1): 21989, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34753963

ABSTRACT

Knee pain is the most common and debilitating symptom of knee osteoarthritis (OA). While there is a perceived association between OA imaging biomarkers and pain, there are weak or conflicting findings for this relationship. This study uses Deep Learning (DL) models to elucidate associations between bone shape, cartilage thickness and T2 relaxation times extracted from Magnetic Resonance Images (MRI) and chronic knee pain. Class Activation Maps (Grad-CAM) applied on the trained chronic pain DL models are used to evaluate the locations of features associated with presence and absence of pain. For the cartilage thickness biomarker, the presence of features sensitive for pain presence were generally located in the medial side, while the features specific for pain absence were generally located in the anterior lateral side. This suggests that the association of cartilage thickness and pain varies, requiring a more personalized averaging strategy. We propose a novel DL-guided definition for cartilage thickness spatial averaging based on Grad-CAM weights. We showed a significant improvement modeling chronic knee pain with the inclusion of the novel biomarker definition: likelihood ratio test p-values of 7.01 × 10-33 and 1.93 × 10-14 for DL-guided cartilage thickness averaging for the femur and tibia, respectively, compared to the cartilage thickness compartment averaging.


Subject(s)
Chronic Pain/diagnostic imaging , Knee Joint/pathology , Magnetic Resonance Imaging/methods , Osteoarthritis, Knee/pathology , Biomarkers/metabolism , Female , Humans , Knee Joint/diagnostic imaging , Male , Middle Aged , Osteoarthritis, Knee/diagnostic imaging
3.
J Orthop Res ; 39(8): 1722-1731, 2021 08.
Article in English | MEDLINE | ID: mdl-33615524

ABSTRACT

Clinicians often examine movement patterns to design hip osteoarthritis (OA) interventions, yet traditional biomechanical analyses only report a single timepoint. Multivariate principal component analysis (MFPCA) analyzes the entire waveform (i.e., movement pattern), which clinicians observe to direct treatment. This study investigated hip OA indicators, by (1) employing MFPCA to characterize variance across the hip, knee, and ankle angles in healthy and early-to-moderate hip OA participants; and (2) investigating relationships between these waveform features and hip cartilage health. Bilateral hip magnetic resonance images from 72 participants with Kellgren-Lawrence grades ranging from 0 to 3 were used to calculate mean T 1ρ and T 2 relaxation times in the femoral and acetabular cartilage. MFPCA was performed on lower-limb gait biomechanics and used to identify primary modes of variation, which were related to T 1ρ and T 2 relaxation times. Here, a MFPC = mode of variation = waveform feature. In the femoral cartilage, transverse plane MFPCs 3 and 5 and body mass index (BMI) was related to T 1ρ , while MFPC 2 and BMI were related to T 2 relaxation times. In the acetabular cartilage, sagittal plane MFPC 1 and BMI were related to T 1ρ , while BMI was related to T 2 relaxation times. Greater internal rotation was related to increased T 1ρ and T 2 relaxation times in the femoral cartilage, while the greater extension was related to increased T 1ρ relaxation times in the acetabular cartilage. This study established a data-driven framework to assess relationships between multi-joint biomechanics and quantitative assessments of cartilage health and identified waveform features that could be evaluated in future hip OA intervention studies.


Subject(s)
Cartilage, Articular , Osteoarthritis, Hip , Osteoarthritis, Knee , Biomechanical Phenomena , Cartilage, Articular/pathology , Gait , Humans , Magnetic Resonance Imaging/methods , Osteoarthritis, Knee/pathology , Principal Component Analysis
4.
Sci Rep ; 10(1): 6371, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286452

ABSTRACT

Knee Osteoarthritis (OA) is a common musculoskeletal disorder in the United States. When diagnosed at early stages, lifestyle interventions such as exercise and weight loss can slow OA progression, but at later stages, only an invasive option is available: total knee replacement (TKR). Though a generally successful procedure, only 2/3 of patients who undergo the procedure report their knees feeling "normal" post-operation, and complications can arise that require revision. This necessitates a model to identify a population at higher risk of TKR, particularly at less advanced stages of OA, such that appropriate treatments can be implemented that slow OA progression and delay TKR. Here, we present a deep learning pipeline that leverages MRI images and clinical and demographic information to predict TKR with AUC 0.834 ± 0.036 (p < 0.05). Most notably, the pipeline predicts TKR with AUC 0.943 ± 0.057 (p < 0.05) for patients without OA. Furthermore, we develop occlusion maps for case-control pairs in test data and compare regions used by the model in both, thereby identifying TKR imaging biomarkers. As such, this work takes strides towards a pipeline with clinical utility, and the biomarkers identified further our understanding of OA progression and eventual TKR onset.


Subject(s)
Arthroplasty, Replacement, Knee , Deep Learning , Knee Joint/diagnostic imaging , Osteoarthritis, Knee/diagnostic imaging , Aged , Case-Control Studies , Datasets as Topic , Female , Humans , Knee Joint/pathology , Knee Joint/surgery , Magnetic Resonance Imaging , Male , Middle Aged , Observational Studies as Topic , Osteoarthritis, Knee/surgery , Prospective Studies , Treatment Outcome , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...