Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36677835

ABSTRACT

The concentration of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere has been continually monitored since their toxicity became known, whereas nitro-PAHs (NPAHs) and oxy-PAHs (OPAHs), which are derivatives of PAHs by primary emissions or secondary formations in the atmosphere, have gained attention more recently. In this study, a method for the quantification of 18 NPAH and OPAH congeners in the atmosphere based on combined applications of gas chromatography coupled with chemical ionization mass spectrometry is presented. A high sensitivity and selectivity for the quantification of individual NPAH and OPAH congeners without sample preparations from the extract of aerosol samples were achieved using negative chemical ionization (NCI/MS) or positive chemical ionization tandem mass spectrometry (PCI-MS/MS). This analytical method was validated and applied to the aerosol samples collected from three regions in Northeast Asia-namely, Noto, Seoul, and Ulaanbaatar-from 15 December 2020 to 17 January 2021. The ranges of the method detection limits (MDLs) of the NPAHs and OPAHs for the analytical method were from 0.272 to 3.494 pg/m3 and 0.977 to 13.345 pg/m3, respectively. Among the three regions, Ulaanbaatar had the highest total mean concentration of NPAHs and OPAHs at 313.803 ± 176.349 ng/m3. The contribution of individual NPAHs and OPAHs in the total concentration differed according to the regional emission characteristics. As a result of the aerosol samples when the developed method was applied, the concentrations of NPAHs and OPAHs were quantified in the ranges of 0.016~3.659 ng/m3 and 0.002~201.704 ng/m3, respectively. It was concluded that the method could be utilized for the quantification of NPAHs and OPAHs over a wide concentration range.

2.
Chemosphere ; 308(Pt 2): 136286, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36075367

ABSTRACT

The aim of this study was to evaluate the performance of gas chromatography (GC)-triple quadrupole mass spectrometry (QqQ, MS/MS) as an alternative to the standard GC-high resolution mass spectrometry (GC-HR/MS) for soils contaminated with polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). GC-QqQ (MS/MS) using a dynamic multiple reaction monitoring (dMRM) mode was optimized for the quantitative analysis of 17 PCDD/Fs. A comparative study between GC-QqQ (MS/MS) and GC-HR/MS was carried out to validate the results of actual field soil samples. Although GC-HR/MS has excellent sensitivity and selectivity, the validation parameters obtained by GC-QqQ (MS/MS) also met the recommended criteria of the standard method. The results for total and I-TEQ (international toxic equivalent) value of the PCDD/F concentrations of over 86.0 pg/g and 4.3 pg I-TEQ/g, respectively, in actual field soil samples showed good agreement between the two methods, falling within ±25% relative difference. In consideration of the remediation goal (100 pg I-TEQ/g), GC-QqQ (MS/MS) can be an alternative cost-effective method for use in soil remediation research.


Subject(s)
Benzofurans , Polychlorinated Dibenzodioxins , Benzofurans/analysis , Cost-Benefit Analysis , Dibenzofurans , Dibenzofurans, Polychlorinated/analysis , Furans , Gas Chromatography-Mass Spectrometry/methods , Polychlorinated Dibenzodioxins/analysis , Soil , Tandem Mass Spectrometry/methods
3.
Toxics ; 9(4)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920550

ABSTRACT

The quantification and identification of saccharides in pristine marine aerosols can provide useful information for determining the contributions of anthropogenic and natural sources of the aerosol. However, individual saccharide compounds in pristine marine aerosols that exist in trace amounts are difficult to analyze due to their low concentrations. Thus, in this study, we applied gas chromatography-tandem mass spectrometry (GC-MS/MS) in multiple reaction monitoring (MRM) mode to analyze the particulate matter with an aerodynamic diameter equal or less than 2.5 µm (PM2.5) samples, and the results were compared with those of conventional GC-MS. To investigate the chemical properties of pristine marine aerosols, 12 PM2.5 samples were collected while aboard Araon, an ice-breaking research vessel (IBRV), as it sailed from Incheon, South Korea to Antarctica. The method detection limits of GC-MS/MS for 10 saccharides were 2-22-fold lower than those of GC-MS. Consequently, the advantages of GC-MS/MS include (1) more distinct peak separations, enabling the accurate identification of the target saccharides and (2) the quantification of all individual saccharide compounds with concentrations outside the quantifiable range of GC-MS. Accordingly, the time resolution for sampling saccharides in pristine marine aerosols can be improved with GC-MS/MS.

4.
Sci Rep ; 8(1): 17007, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30451941

ABSTRACT

Fine particulate matters less than 2.5 µm (PM2.5) in the ambient atmosphere are strongly associated with adverse health effects. However, it is unlikely that all fine particles are equally toxic in view of their different sizes and chemical components. Toxicity of fine particles produced from various combustion sources (diesel engine, gasoline engine, biomass burning (rice straw and pine stem burning), and coal combustion) and non-combustion sources (road dust including sea spray aerosols, ammonium sulfate, ammonium nitrate, and secondary organic aerosols (SOA)), which are known major sources of PM2.5, was determined. Multiple biological and chemical endpoints were integrated for various source-specific aerosols to derive toxicity scores for particles originating from different sources. The highest toxicity score was obtained for diesel engine exhaust particles, followed by gasoline engine exhaust particles, biomass burning particles, coal combustion particles, and road dust, suggesting that traffic plays the most critical role in enhancing the toxic effects of fine particles. The toxicity ranking of fine particles produced from various sources can be used to better understand the adverse health effects caused by different fine particle types in the ambient atmosphere, and to provide practical management of fine particles beyond what can be achieved only using PM mass which is the current regulation standard.


Subject(s)
Cell Survival , DNA Damage , Oxidative Stress , Particulate Matter/adverse effects , Particulate Matter/classification , Aerosols/adverse effects , Air Pollutants/adverse effects , Cells, Cultured , Dust , Humans , Inflammation/etiology , Vehicle Emissions/poisoning
SELECTION OF CITATIONS
SEARCH DETAIL
...