Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 14(5)2022 May 11.
Article in English | MEDLINE | ID: mdl-35631622

ABSTRACT

Ursodeoxycholate (UDCA) has low oral bioavailability and pH-dependent solubility and permeability. Thus, we developed a pH-modified extended-release formulation of UDCA using Na2CO3 as the alkalizing agent and hydroxypropyl methylcellulose (HPMC) as the release-modifying agent. The optimized pH-modified controlled-release UDCA formulation, with the UDCA:HPMC:Na2CO3 ratio of 200:600:150 (w/w/w), was prepared using a spray-drying method. Then, the formulation's solubility, dissolution, and pharmacokinetic properties were characterized. In a pH-modified extended-release formulation of UDCA, the solubility of UDCA was increased to 8 mg/mL with a sustained dissolution for 12 h. Additionally, the spray-dried formulation exhibited amorphous states without molecular interaction among UDCA, Na2CO3, and HPMC. Moreover, the plasma UDCA concentration of the formulation maintained a higher UDCA concentration for up to 48 h than that of UDCA itself or the non-extended-release UDCA formulation. Consequently, the formulation significantly increased the AUC compared to UDCA or the non-extended-release UDCA formulation in rats. In conclusion, we have improved UDCA's solubility and dissolution profile by preparing a pH-modified extended-release formulation with the UDCA:HPMC:Na2CO3 ratio of 200:600:150 (w/w/w), which effectively increased the oral bioavailability of UDCA by 251% in rats.

2.
Toxics ; 10(4)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35448423

ABSTRACT

Anionic surfactants (AS) are becoming a major emerging contaminant of waters due to their widespread use in household and industrial products. The standard chloroform method for analysis of AS in water relies on chloroform extraction of a methylene blue active substance (MBAS), which contains ion pairs between methylene blue (MB) molecules (positively charged) and AS. Due to the poor extractability of chloroform, the procedure is complicated, time-consuming, and subject to anionic interferences. A mixture of methyl isobutyl ketone (MIBK)-1,2-dichloroethane (DCE) at a 3:1 ratio of MIBK:DCE proved to be a robust solvent for AS extraction for a wide range of samples under various chemical conditions. The objectives of this research were to set the washing protocol to eliminate the anionic interferences in the MIBK-DCE extraction and to develop a new simplified analytical method for AS analysis using the MIBK-DCE (3:1) extractant. The suitability of the proposed MIBK-DCE method was validated based on quality control and assurance criteria, such as selectivity, accuracy, precision, method detection limit (MDL), limit of quantification (LOQ), and sensitivity. Various water samples, such as freshwater, wastewater, and seawater, were used for the method development and validation. Interferences by inorganic and organic anions were evident in the reference chloroform method but were eliminated in the MIBK-DCE procedure with a two-step process that consisted of washing with a carbonate/bicarbonate solution at pH 9.2 and a mixture of silver sulfate (Ag2SO4) and potassium alum (AlK(SO4)2). The simplified MIBK-DCE method for sodium dodecyl sulfate (SDS) analysis consisted of (i) sample pre-treatment, (ii) MIBK-DCE extraction, (iii) washing and filtration, and (iv) absorbance measurement. The MIBK-DCE method was accurate, precise, selective, and sensitive for AS analysis and showed MDL of 0.0001 mg/L, LOQ of 0.0005 mg/L, relative standard deviation (RSD) of 0.1%, and recovery of 99.0%. All these criteria were superior to those of the chloroform method. Sensitivity analysis showed highly significant correlations in AS analyses between the MIBK-DCE and chloroform methods for domestic wastewater, industrial wastewater, and seawater. The MIBK-DCE method is simple, rapid, robust, reproducible, and convenient, when compared to the chloroform method. Results demonstrate that the simplified MIBK-DCE method can be employed for AS analysis in a wide range of environmental waters including seawater.

3.
J Hazard Mater ; 419: 126470, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34216960

ABSTRACT

Biological desulfurization processes of landfill gas yield an enormous amount of biologically produced S (BPS) as a byproduct. Capability of BPS to remove Cd2+ from aqueous solutions was tested and its removal efficiency was compared to that of granular activated carbon (GAC). Kinetics of Cd2+ removal by BPS was a two-stage process with an initial rapid adsorption showing 45% of initial Cd2+ was removed within 5 min, followed by a slower adsorption. Cadmium adsorption onto the BPS fitted the Langmuir isotherm model and maximum adsorption capacity of the BPS (63.3 mg g-1) was 1.8 times higher than that of GAC (36.1 mg g-1). Thermodynamic parameters showed that Cd2+ adsorption by BPS was favorable and endothermic. Data from XPS proved the main adsorption mechanism to be complexation of Cd2+ with sulfides in the BPS. Results demonstrated that BPS can be recycled as a novel adsorbent for Cd2+ removal from wastewater.


Subject(s)
Cadmium , Water Pollutants, Chemical , Adsorption , Cadmium/analysis , Charcoal , Hydrogen-Ion Concentration , Kinetics , Solutions , Sulfur , Thermodynamics , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...