Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Food Funct ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771619

ABSTRACT

Obesity requires treatment to mitigate the potential development of further metabolic disorders, including diabetes, hyperlipidemia, tumor growth, and non-alcoholic fatty liver disease. We investigated the anti-obesity effect of a 30% ethanol extract of Eisenia bicyclis (Kjellman) Setchell (EEB) on 3T3-L1 preadipocytes and high-fat diet (HFD)-induced obese C57BL/6 mice. Adipogenesis transcription factors including peroxisome proliferator-activated receptor (PPAR)γ, CCAAT/enhancer-binding protein-alpha (C/EBPα), and sterol regulatory element-binding protein-1 (SREBP-1) were ameliorated through the AMP-activated protein kinase (AMPK) pathway by EEB treatment in differentiated 3T3-L1 cells. EEB attenuated mitotic clonal expansion by upregulating cyclin-dependent kinase inhibitors (CDKIs) while downregulating cyclins and CDKs. In HFD-fed mice, EEB significantly decreased the total body weight, fat tissue weight, and fat in the tissue. The protein expression of PPARγ, C/EBPα, and SREBP-1 was increased in the subcutaneous fat and liver tissues, while EEB decreased the expression levels of these transcription factors. EEB also inhibited lipogenesis by downregulating acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression in the subcutaneous fat and liver tissues. Moreover, the phosphorylation of AMPK and ACC was downregulated in the HFD-induced mouse group, whereas the administration of EEB improved AMPK and ACC phosphorylation; thus, EEB treatment may be related to the AMPK pathway. Histological analysis showed that EEB reduced the adipocyte size and fat accumulation in subcutaneous fat and liver tissues, respectively. EEB promotes thermogenesis in brown adipose tissue and improves insulin and leptin levels and blood lipid profiles. Our results suggest that EEB could be used as a potential agent to prevent obesity.

3.
Life Sci ; 340: 122424, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38242497

ABSTRACT

Inflammatory Bowel Disease (IBD) is a chronic and relapsing inflammatory condition characterized by severe symptoms such as diarrhea, fatigue, and weight loss. Growing evidence underscores the direct involvement of the nuclear factor-erythroid 2-related factor 2 (NRF2) in the development and progression of IBD, along with its associated complications, including colorectal cancer. The NRF2 pathway plays a crucial role in cellular responses to oxidative stress, and dysregulation of this pathway has been implicated in IBD. Flavones, a significant subclass of flavonoids, have shown pharmacological impacts in various diseases including IBD, through the NRF2 signaling pathway. In this study, we conducted a screening of compounds with a flavone structure and identified NJK15003 as a promising NRF2 activator. NJK15003 demonstrated potent NRF2 activation, as evidenced by the upregulation of downstream proteins, promoter activation, and NRF2 nuclear translocation in IBD cellular models. Treatment with NJK15003 effectively restored the protein levels of tight junctions in cells treated with dextran sodium sulfate (DSS) and in DSS-treated mice, suggesting its potential to protect cells from barrier integrity disruption in IBD. In DSS-treated mice, the administration of NJK15003 resulted in the prevention of body weight loss, a reduction in colon length shortening, and a decrease in the disease activity index. Furthermore, NJK15003 treatment substantially alleviated inflammatory responses and apoptotic cell death in the colon of DSS-treated mice. Taken together, this study proposes the potential utility of NRF2-activating flavone compounds, exemplified by NJK15003, for the treatment of IBD.


Subject(s)
Colitis , Flavones , Inflammatory Bowel Diseases , Sulfates , Mice , Animals , NF-E2-Related Factor 2/metabolism , Dextrans/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Flavones/pharmacology , Flavones/therapeutic use , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Dextran Sulfate/toxicity , Mice, Inbred C57BL , Disease Models, Animal , Colon/metabolism
4.
CNS Neurosci Ther ; 30(4): e14509, 2024 04.
Article in English | MEDLINE | ID: mdl-37904343

ABSTRACT

AIMS: Cognitive impairment is associated with reduced hippocampal neurogenesis; however, the causes of decreased hippocampal neurogenesis remain highly controversial. Here, we investigated the role of survivin in the modulation of hippocampal neurogenesis in AD. METHODS: To investigate the effect of survivin on neurogenesis in neural stem cells (NSCs), we treated mouse embryonic NSCs with a survivin inhibitor (YM155) and adeno-associated viral survivin (AAV-Survivin). To explore the potential role of survivin expression in AD, AAV9-Survivin or AAV9-GFP were injected into the dentate gyrus (DG) of hippocampus of 7-month-old wild-type and 5XFAD mice. Cognitive function was measured by the Y maze and Morris water maze. Neurogenesis was investigated by BrdU staining, immature, and mature neuron markers. RESULTS: Our results indicate that suppression of survivin expression resulted in decreased neurogenesis. Conversely, overexpression of survivin using AAV-Survivin restored neurogenesis in NSCs that had been suppressed by YM155 treatment. Furthermore, the expression level of survivin decreased in the 9-month-old 5XFAD compared with that in wild-type mice. AAV-Survivin-mediated overexpression of survivin in the DG in 5XFAD mice enhanced neurogenesis and cognitive function. CONCLUSION: Hippocampal neurogenesis can be enhanced by survivin overexpression, suggesting that survivin could serve as a promising therapeutic target for the treatment of AD.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/drug therapy , Survivin/pharmacology , Survivin/therapeutic use , Hippocampus , Neurogenesis/physiology , Cognition , Disease Models, Animal , Mice, Transgenic
5.
J Neuroinflammation ; 20(1): 282, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012646

ABSTRACT

BACKGROUND: The gut microbiota has recently attracted attention as a pathogenic factor in Alzheimer's disease (AD). Microfold (M) cells, which play a crucial role in the gut immune response against external antigens, are also exploited for the entry of pathogenic bacteria and proteins into the body. However, whether changes in M cells can affect the gut environments and consequently change brain pathologies in AD remains unknown. METHODS: Five familial AD (5xFAD) and 5xFAD-derived fecal microbiota transplanted (5xFAD-FMT) naïve mice were used to investigate the changes of M cells in the AD environment. Next, to establish the effect of M cell depletion on AD environments, 5xFAD mice and Spib knockout mice were bred, and behavioral and histological analyses were performed when M cell-depleted 5xFAD mice were six or nine months of age. RESULTS: In this study, we found that M cell numbers were increased in the colons of 5xFAD and 5xFAD-FMT mice compared to those of wild-type (WT) and WT-FMT mice. Moreover, the level of total bacteria infiltrating the colons increased in the AD-mimicked mice. The levels of M cell-related genes and that of infiltrating bacteria showed a significant correlation. The genetic inhibition of M cells (Spib knockout) in 5xFAD mice changed the composition of the gut microbiota, along with decreasing proinflammatory cytokine levels in the colons. M cell depletion ameliorated AD symptoms including amyloid-ß accumulation, microglial dysfunction, neuroinflammation, and memory impairment. Similarly, 5xFAD-FMT did not induce AD-like pathologies, such as memory impairment and excessive neuroinflammation in Spib-/- mice. CONCLUSION: Therefore, our findings provide evidence that the inhibiting M cells can prevent AD progression, with therapeutic implications.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/pathology , Microglia/metabolism , M Cells , Neuroinflammatory Diseases , Amyloid beta-Peptides/metabolism , Memory Disorders , Mice, Knockout , Phenotype , Disease Models, Animal , Mice, Transgenic
6.
Int Immunopharmacol ; 125(Pt A): 111083, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37871380

ABSTRACT

Hydrangenol, a dihydroisocoumarin, isolated from the leaves of Hydrangea serrata, possesses anti-inflammatory, anti-obesity, and anti-photoaging activities. In this study, we investigated the protective effects of hydrangenol (HG) against lipopolysaccharide (LPS)-induced endotoxemia and elucidated the underlying molecular mechanisms of action in C57BL/6 mice. Oral administration of HG (20 or 40 mg/kg) significantly restored the survival rate and population of macrophages, T helper cells (CD3+/CD4+), and Th17 cells (CD3+/CD4+/CCR6+) in the spleens of mice with LPS-induced endotoxemia. HG suppressed the expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1ß, and Interferon (IFN)-γ and the mRNA and protein expressions of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in the intestine and lung of LPS-treated mice. Molecular data showed that HG ameliorated the activation of nuclear factor kappa B (NF-κB) p65, signal transducers and activators of transcription 3 (STAT3), and c-Fos and c-Jun (AP-1 subunits) via the myeloid differentiation primary response 88 (MyD88) dependent toll-like receptor 4 (TLR4) signaling pathway in the LPS-treated mouse intestines. HG treatment caused the recovery of LPS-induced impaired tight junction (occludin and claudin-2) protein and mRNA expressions. Furthermore, HG improved LPS-induced gut dysbiosis in mice. Taken together, our results suggest that HG protects against LPS-induced endotoxemia by restoring immune cells and the capacity of the intestinal barrier, reducing intestinal inflammation, and improving the composition of the gut microbiota.


Subject(s)
Endotoxemia , Lipopolysaccharides , Animals , Mice , Endotoxemia/chemically induced , Endotoxemia/drug therapy , Inflammation/chemically induced , Inflammation/drug therapy , Mice, Inbred C57BL , NF-kappa B/metabolism , Interleukin-6/metabolism , RNA, Messenger
7.
Food Funct ; 14(15): 6957-6968, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37435675

ABSTRACT

Ulcerative colitis (UC) is a chronic disease of the colon characterized by mucosal damage and relapsing gastrointestinal inflammation. Hydrangea serrata (Thunb.) Ser. and its bioactive compound, hydrangenol, are reported to have anti-inflammatory effects, but few studies have investigated the effects of hydrangenol in colitis. In the present study, we evaluated for the first time the anti-colitic effects and molecular mechanisms of hydrangenol in a dextran sodium sulfate (DSS)-induced mouse colitis model. To investigate the anti-colitic effects of hydrangenol, DSS-induced colitis mice, HT-29 colonic epithelial cells treated with supernatant from LPS-inflamed THP-1 macrophages, and LPS-induced RAW264.7 macrophages were used. In addition, to clarify the molecular mechanisms of this study, quantitative real time-PCR, western blot analysis, TUNEL assay, and annexin V-FITC/PI double staining analysis were conducted. Oral administration of hydrangenol (15 or 30 mg kg-1) significantly alleviated DSS-induced colitis by preventing DAI scores, shortening colon length, and colonic structural damage. F4/80+ macrophage numbers in mesenteric lymph nodes and macrophage infiltration in colonic tissues were significantly suppressed following hydrangenol treatment in DSS-exposed mice. Hydrangenol significantly attenuated DSS-induced destruction of the colonic epithelial cell layer through regulation of pro-caspase-3, occludin, and claudin-1 protein expression. Moreover, hydrangenol ameliorated abnormal tight junction protein expression and apoptosis in HT-29 colonic epithelial cells treated with supernatant from LPS-inflamed THP-1 macrophages. Hydrangenol suppressed the expression of pro-inflammatory mediators, such as iNOS, COX-2, TNF-α, IL-6, and IL-1ß through NF-κB, AP-1, and STAT1/3 inactivation in DSS-induced colon tissue and LPS-induced RAW264.7 macrophages. Taken together, our findings suggest that hydrangenol recovers the tight junction proteins and down-regulates the expression of the pro-inflammatory mediators by interfering with the macrophage infiltration in DSS-induced colitis. Our study provides compelling evidence that hydrangenol may be a candidate for inflammatory bowel disease therapy.


Subject(s)
Colitis, Ulcerative , Colitis , Hydrangea , Animals , Mice , Dextran Sulfate/adverse effects , Lipopolysaccharides/pharmacology , Signal Transduction , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Colitis, Ulcerative/chemically induced , Colon/metabolism , Macrophages , NF-kappa B/genetics , NF-kappa B/metabolism , Inflammation Mediators/metabolism , Disease Models, Animal , Mice, Inbred C57BL
8.
Phytomedicine ; 118: 154930, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37348246

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-ß (Aß) and excessive neuroinflammation, resulting in neuronal cell death and cognitive impairments. Eugenol, a phenylpropene, is the main component of Syzygium aromaticum L. (Myrtaceae) and has multiple therapeutic effects, including neuroprotective and anti-inflammatory effects, through multimodal mechanisms. PURPOSE: We aimed to investigate the effect of eugenol on AD pathologies using a 5× familiar AD (5×FAD) mouse model. METHODS: Eight-month-old 5×FAD and wild-type mice were administered with eugenol (10 or 30 mg/kg/day, p.o) for 2 months. Y-maze and Morris water maze tests were performed to assess the cognitive function of mice. After the behavioral test, molecular analysis was conducted to investigate the therapeutic mechanism of eugenol. RESULTS: Our findings indicate that eugenol treatment effectively mitigated cognitive impairments in 5×FAD mice. This beneficial effect was associated with a decrease in AD pathologies, including neuronal cell loss and Aß deposition. Specifically, eugenol inhibited necroptosis activation and increased microglial phagocytosis, which were the underlying mechanisms for the observed reductions in neuronal cell loss and Aß deposition, respectively. CONCLUSION: Overall, our data suggest that eugenol would be a potential therapeutic candidate for AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Alzheimer Disease/metabolism , Eugenol/pharmacology , Eugenol/therapeutic use , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Disease Models, Animal
9.
Antioxidants (Basel) ; 12(5)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37237899

ABSTRACT

Oxidative catabolism of monoamine neurotransmitters by monoamine oxidases (MAOs) produces reactive oxygen species (ROS), which contributes to neuronal cells' death and also lowers monoamine neurotransmitter levels. In addition, acetylcholinesterase activity and neuroinflammation are involved in neurodegenerative diseases. Herein, we aim to achieve a multifunctional agent that inhibits the oxidative catabolism of monoamine neurotransmitters and, hence, the detrimental production of ROS while enhancing neurotransmitter levels. Such a multifunctional agent might also inhibit acetylcholinesterase and neuroinflammation. To meet this end goal, a series of aminoalkyl derivatives of analogs of the natural product hispidol were designed, synthesized, and evaluated against both monoamine oxidase-A (MAO-A) and monoamine oxidase-B (MAO-B). Promising MAO inhibitors were further checked for the inhibition of acetylcholinesterase and neuroinflammation. Among them, compounds 3aa and 3bc were identified as potential multifunctional molecules eliciting submicromolar selective MAO-B inhibition, low-micromolar AChE inhibition, and the inhibition of microglial PGE2 production. An evaluation of their effects on memory and cognitive impairments using a passive avoidance test confirmed the in vivo activity of compound 3bc, which showed comparable activity to donepezil. In silico molecular docking provided insights into the MAO and acetylcholinesterase inhibitory activities of compounds 3aa and 3bc. These findings suggest compound 3bc as a potential lead for the further development of agents against neurodegenerative diseases.

10.
ACS Cent Sci ; 9(3): 417-426, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36968534

ABSTRACT

Targeted protein degradation (TPD) provides unique advantages over gene knockdown in that it can induce selective degradation of disease-associated proteins attributed to pathological mutations or aberrant post-translational modifications (PTMs). Herein, we report a protein degrader, PRZ-18002, that selectively binds to an active form of p38 MAPK. PRZ-18002 induces degradation of phosphorylated p38 MAPK (p-p38) and a phosphomimetic mutant of p38 MAPK in a proteasome-dependent manner. Given that the activation of p38 MAPK plays pivotal roles in the pathophysiology of Alzheimer's disease (AD), selective degradation of p-p38 may provide an attractive therapeutic option for the treatment of AD. In the 5xFAD transgenic mice model of AD, intranasal treatment of PRZ-18002 reduces p-p38 levels and alleviates microglia activation and amyloid beta (Aß) deposition, leading to subsequent improvement of spatial learning and memory. Collectively, our findings suggest that PRZ-18002 ameliorates AD pathophysiology via selective degradation of p-p38, highlighting a novel therapeutic TPD modality that targets a specific PTM to induce selective degradation of neurodegenerative disease-associated protein.

11.
Phytother Res ; 37(7): 2854-2863, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36814130

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by amyloid-ß (Aß) deposition, accompanied by neuroinflammation and memory dysfunction. Houttuyniae Herba (aerial parts of Houttuynia cordata, also known as fish mint; HH), an herbal medicine traditionally used to treat fever, urinary disorders, and pus, is revealed to protect neurons from Aß toxicity and regulate cholinergic dysfunction in AD models. In this study, we aimed to investigate the effects of HH on excessive accumulation of Aß followed by neuroinflammation, synaptic degeneration, and memory impairment. Two-month-old 5xFAD transgenic mice were administered HH at 100 mg/kg for 4 months. We observed that HH treatment ameliorated memory impairment and reduced Aß deposits in the brains of the mice. HH directly inhibited Aß aggregation in vitro using the Thioflavin T assay and indirectly suppressed the amyloidogenic pathway by increasing alpha-secretase expression in the mice brain. In addition, HH exerted antineuroinflammatory effects by reducing of glial activation and p38 phosphorylation. Moreover, HH treatment increased the expression of synaptophysin, a presynaptic marker protein. Overall, HH alleviates memory impairment in AD by facilitating nonamyloidogenic pathway and inhibiting neuroinflammation. Therefore, we suggest that HH can be a promising herbal drug for patients with AD requiring multifaceted improvement.


Subject(s)
Alzheimer Disease , Houttuynia , Neurodegenerative Diseases , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Houttuynia/metabolism , Neuroinflammatory Diseases , Mice, Transgenic , Plant Components, Aerial , Disease Models, Animal
12.
Phytomedicine ; 109: 154553, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36610153

ABSTRACT

BACKGROUND: We previously reported the potential inhibitory activity of 3',4'-dihydroxyflavone (DHF) on nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-stimulated macrophages. PURPOSE: We investigated the underlying molecular mechanisms of DHF in LPS-activated macrophages and evaluated its effect on LPS-induced septic shock in mice. METHODS: To explore the anti-inflammatory effect of DHF, nitrite, PGE2, and cytokines were measured in vitro and in vivo experiments. In addition, to verify the molecular signaling pathway, quantitative real time-PCR, luciferase assay, nuclear extraction, electrophoretic mobility shift assay, immunocytochemistry, immunoprecipitation, molecular docking analysis, and myeloid differentiation 2 (MD2)-LPS binding assay were conducted. RESULTS: DHF suppressed the LPS-induced expression of proinflammatory mediators through nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and interferon regulatory factor 3 (IRF3) inactivation pathways in RAW 264.7 macrophages. Importantly, molecular docking analysis and in vitro binding assays showed that DHF interacts with the hydrophobic pocket of MD2 and then interferes with the interaction between LPS and toll-like receptor 4 (TLR4). DHF inhibited LPS-induced oxidative stress by upregulating nuclear factor erythroid 2-related factor 2 (Nrf2). Treatment of LPS-induced endotoxemia mice with DHF reduced the expression levels of pro-inflammatory mediators via the inactivation of NF-κB, AP-1, and signal transducer and activator of transcription 1 (STAT1) in the lung tissue, thus increasing the survival rate. CONCLUSION: Taken together, our data first time revealed the underlying mechanism of the DHF-dependent anti-inflammatory effect by preventing LPS from binding to the TLR4/MD2 complex. Therefore, DHF may be a possible anti-inflammatory agent for the treatment of LPS-mediated inflammatory diseases.


Subject(s)
Lipopolysaccharides , NF-kappa B , Animals , Mice , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Transcription Factor AP-1/metabolism , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology
13.
Nutrients ; 14(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36145056

ABSTRACT

Excessive lipid accumulation in white adipose tissue (WAT) is the major cause of obesity. Herein, we investigated the anti-obesity effect and molecular mechanism of a botanical mixture of 30% EtOH extract from the leaves of Inula japonica and Potentilla chinensis (EEIP) in 3T3-L1 preadipocytes and high-fat diet (HFD)-fed obese mice. In vitro, EEIP prevented lipid accumulation by downregulating the expression of lipogenesis-related transcription factors such as CCAAT/enhancer binding protein (C/EBP)α, peroxisome proliferator-activated receptor (PPAR)γ, and sterol regulatory element binding protein (SREBP)-1 via AMP-activated protein kinase (AMPK) activation and G0/G1 cell cycle arrest by regulating the Akt-mTOR pathways without inducing cytotoxicity. In vivo, EEIP significantly reduced body weight gain and body fat mass in the group administered concurrently with HFD (pre-) or administered during the maintenance of HFD (post-) including subcutaneous, gonadal, renal, and mesenteric fats, and improved blood lipid profiles and metabolic hormones. EEIP pre-administration also alleviated WAT hypertrophy and liver lipid accumulation by reducing C/EBPα, PPARγ, and SREBP-1 expression via AMPK activation. In the brown adipose tissue, EEIP pre-administration upregulated the expression of thermogenic factors. Furthermore, EEIP improved the HFD-induced altered gut microbiota in mice. Taken together, our data indicated that EEIP improves HFD-induced obesity through adipogenesis inhibition in the WAT and liver and is a promising dietary natural material for improving obesity.


Subject(s)
Inula , Potentilla , 3T3-L1 Cells , AMP-Activated Protein Kinases/metabolism , Adipocytes , Adipogenesis , Animals , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Diet, High-Fat , Hormones/metabolism , Inula/metabolism , Mice , Mice, Obese , Obesity/metabolism , PPAR gamma/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , TOR Serine-Threonine Kinases/metabolism
14.
Nutrients ; 14(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35956303

ABSTRACT

Alzheimer's disease (AD) is an irreversible neurodegenerative disease characterized by memory and cognitive impairments. Neurogenesis, which is related to memory and cognitive function, is reduced in the brains of patients with AD. Therefore, enhancing neurogenesis is a potential therapeutic strategy for neurodegenerative diseases, including AD. Hesperidin (HSP), a bioflavonoid found primarily in citrus plants, has anti-inflammatory, antioxidant, and neuroprotective effects. The objective of this study was to determine the effects of HSP on neurogenesis in neural stem cells (NSCs) isolated from the brain of mouse embryos and five familial AD (5xFAD) mice. In NSCs, HSP significantly increased the proliferation of NSCs by activating adenosine monophosphate (AMP)-activated protein kinase (AMPK)/cAMP-response element-binding protein (CREB) signaling, but did not affect NSC differentiation into neurons and astrocytes. HSP administration restored neurogenesis in the hippocampus of 5xFAD mice via AMPK/brain-derived neurotrophic factor/tropomyosin receptor kinase B/CREB signaling, thereby decreasing amyloid-beta accumulation and ameliorating memory dysfunction. Collectively, these preclinical findings suggest that HSP is a promising candidate for the prevention and treatment of AD.


Subject(s)
Alzheimer Disease , Hesperidin , Neurodegenerative Diseases , AMP-Activated Protein Kinases/metabolism , Alzheimer Disease/metabolism , Animals , Disease Models, Animal , Hesperidin/metabolism , Hesperidin/pharmacology , Hesperidin/therapeutic use , Hippocampus/metabolism , Mice , Mice, Transgenic , Neurodegenerative Diseases/metabolism , Neurogenesis
15.
Nutrients ; 14(3)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35277054

ABSTRACT

The hepatic adiponectin and farnesoid X receptor (FXR) signaling pathways play multiple roles in modulating lipid and glucose metabolism, reducing hepatic inflammation and fibrosis, and altering various metabolic targets for the management of non-alcoholic fatty liver disease (NAFLD). Alisma orientale (AO, Ze xie in Chinese and Taeksa in Korean) is an herbal plant whose tubers are enriched with triterpenoids, which have been reported to exhibit various bioactive properties associated with NAFLD. Here, the present study provides a preclinical evaluation of the biological functions and related signaling pathways of AO extract for the treatment of NAFLD in a Western diet (WD)-induced mouse model. The findings showed that AO extract significantly reversed serum markers (liver function, lipid profile, and glucose) and improved histological features in the liver sections of mice fed WD for 52 weeks. In addition, it also reduced hepatic expression of fibrogenic markers in liver tissue and decreased the extent of collagen-positive areas, as well as inhibited F4/80 macrophage aggregation and inflammatory cytokine secretion. The activation of adiponectin and FXR expression in hepatic tissue may be a major mechanistic signaling cascade supporting the promising role of AO in NAFLD pharmacotherapy. Collectively, our results demonstrated that AO extract improves non-alcoholic steatohepatitis (NASH) resolution, particularly with respect to NASH-related fibrosis, along with the regulation of liver enzymes, postprandial hyperglycemia, hyperlipidemia, and weight loss, probably through the modulation of the hepatic adiponectin and FXR pathways.


Subject(s)
Alisma , Diet, Western , Non-alcoholic Fatty Liver Disease , Adiponectin/metabolism , Alisma/chemistry , Animals , Diet, Western/adverse effects , Fibrosis , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/etiology , Plant Extracts/therapeutic use
16.
J Enzyme Inhib Med Chem ; 37(1): 768-780, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35196956

ABSTRACT

Multifunctional molecules might offer better treatment of complex multifactorial neurological diseases. Monoaminergic pathways dysregulation and neuroinflammation are common convergence points in diverse neurodegenerative and neuropsychiatric disorders. Aiming to target these diseases, polypharmacological agents modulating both monoaminergic pathways and neuroinflammatory were addressed. A library of analogues of the natural product hispidol was prepared and evaluated for inhibition of monoamine oxidases (MAOs) isoforms. Several molecules emerged as selective potential MAO B inhibitors. The most promising compounds were further evaluated in vitro for their impact on microglia viability, induced production of proinflammatory mediators and MAO-B inhibition mechanism. Amongst tested compounds, 1p was a safe potent competitive reversible MAO-B inhibitor and inhibitor of microglial production of neuroinflammatory mediators; NO and PGE2. In-silico study provided insights into molecular basis of the observed selective MAO B inhibition. This study presents compound 1p as a promising lead compound for management of neurodegenerative disease.


Subject(s)
Benzofurans/pharmacology , Benzylidene Compounds/pharmacology , Biological Products/pharmacology , Inflammation/drug therapy , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Neurodegenerative Diseases/drug therapy , Benzofurans/chemical synthesis , Benzofurans/chemistry , Benzylidene Compounds/chemical synthesis , Benzylidene Compounds/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Drug Discovery , Humans , Inflammation/metabolism , Molecular Structure , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Neurodegenerative Diseases/metabolism , Structure-Activity Relationship
17.
Nutr Neurosci ; 25(9): 1940-1947, 2022 Sep.
Article in English | MEDLINE | ID: mdl-33877009

ABSTRACT

OBJECTIVES: Amyloid beta (Aß)-induced abnormal neuroinflammation is recognized as a major pathological factor of Alzheimer's disease (AD), which results in memory impairment. Inhibition of excessive neuroinflammation mediated by Aß is considered a promising strategy to ameliorate AD symptoms. To regulate the inflammatory response, nutritional and dietary supplements have been used for centuries. Based on this idea, we investigated whether MBN, a novel nutritional mixture including cassia bark, turmeric root, and ginkgo leaf, can prevent AD progression through neuroinflammatory regulation. METHODS: MBN (10, 30, or 100 µg/ml) and Aß1-42 monomer were incubated together, and the degree of Aß aggregation was measured using Thioflavin T assay. The effects of MBN on Aß pathology in vivo were evaluated by orally administering MBN (40 mg/kg/day for 16 weeks) to five familial AD (5xFAD) mice. RESULTS: We found that treatment with MBN inhibited Aß aggregation in vitro. Next, MBN treatment significantly inhibited the activation of microglia induced by aggregated Aß in 5xFAD mice. Caspase-1 activation, which plays an important role in the maturation of interleukin-1ß, was markedly reduced by MBN. We also found that oral administration of MBN in 5xFAD mice alleviated memory decline. Taken together, our findings demonstrate that MBN suppresses neuroinflammation by downregulating the caspase-1 expression, thereby ameliorating memory impairment in 5xFAD mice. DISCUSSION: Based on these results, we suggest that MBN may be a preventive and therapeutic supplement for AD through the regulation of neuroinflammation.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Caspases/therapeutic use , Disease Models, Animal , Inflammasomes/therapeutic use , Interleukin-1beta , Memory Disorders/pathology , Memory Disorders/prevention & control , Mice , Mice, Transgenic , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
18.
Brain Behav Immun ; 98: 357-365, 2021 11.
Article in English | MEDLINE | ID: mdl-34500036

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease that causes memory and cognitive decline. Although many studies have attempted to clarify the causes of AD occurrence, it is not clearly understood. Recently, the emerging role of the gut microbiota in neurodegenerative diseases, including AD, has received much attention. The gut microbiota composition of AD patients and AD mouse models is different from that of healthy controls, and these changes may affect the brain environment. However, the specific mechanisms by which gut microbiota that influence memory decline are currently unclear. In this study, we performed fecal microbiota transplantation (FMT) to clarify the role of 5xFAD mouse-derived microbiota in memory decline. We observed that FMT from 5xFAD mice into normal C57BL/6 mice (5xFAD-FMT) decreased adult hippocampal neurogenesis and brain-derived neurotrophic factor expression and increased p21 expression, resulting in memory impairment. Microglia in the hippocampus of the 5xFAD-FMT mice were activated, which caused the elevation of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1ß). Moreover, we observed that pro-inflammatory cytokines increased in the colon and plasma of 5xFAD-FMT mice. The gut microbiota composition of the 5xFAD-FMT mice was different from that of the control mice or wild type-FMT mice. Collectively, 5xFAD mouse-derived microbiota decreased neurogenesis by increasing colonic inflammation, thereby contributing to memory loss. Our findings provide further evidence concerning the role of gut microbial dysbiosis in AD pathogenesis and suggest that targeting the gut microbiota may be a useful therapeutic strategy for the development of novel candidates for the treatment of AD.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Neurodegenerative Diseases , Animals , Humans , Mice , Mice, Inbred C57BL , Neurogenesis
19.
Bioorg Chem ; 113: 105022, 2021 08.
Article in English | MEDLINE | ID: mdl-34098397

ABSTRACT

In this study, polyhydroxyisoflavones that directly prevent the aggregation of both amyloid ß (Aß) and tau were expediently synthesized via divergent Pd(0)-catalyzed Suzuki-Miyaura coupling and then biologically evaluated. By preliminary structure-activity relationship studies using thioflavin T (ThT) assays, an ortho-catechol containing isoflavone scaffold was proven to be crucial for preventing both Aß aggregation and tau-mediated neurofibrillary tangle formation. Additional TEM experiment confirmed that ortho-catechol containing isoflavone 4d significantly prevented the aggregation of both Aß and tau. To investigate the mode of action (MOA) of 4d, which possesses an ortho-catechol moiety, 1H-15N HSQC NMR analysis was thoroughly performed and the result indicated that 4d could directly inhibit both the formation of Aß42 fibrils and the formation of tau-derived neurofibrils, probably through the catechol-mediated nucleation of tau. Finally, 4d was demonstrated to alleviate cognitive impairment and pathologies related to Alzheimer's disease in a 5XFAD transgenic mouse model.


Subject(s)
Catechols/chemistry , Isoflavones/chemistry , Neuroprotective Agents/chemistry , tau Proteins/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Disease Models, Animal , Drug Design , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurofibrillary Tangles/drug effects , Neurofibrillary Tangles/metabolism , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/metabolism , Protein Aggregates/drug effects , tau Proteins/antagonists & inhibitors
20.
Molecules ; 26(9)2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33926033

ABSTRACT

A series of PROTACs (PROteolysis-TArgeting Chimeras) consisting of bicalutamide analogs and thalidomides were designed, synthesized, and biologically evaluated as novel androgen receptor (AR) degraders. In particular, we found that PROTAC compound 13b could successfully demonstrate a targeted degradation of AR in AR-positive cancer cells and might be a useful chemical probe for the investigation of AR-dependent cancer cells, as well as a potential therapeutic candidate for prostate cancers.


Subject(s)
Androgen Antagonists/chemistry , Anilides/chemistry , Nitriles/chemistry , Receptors, Androgen/chemistry , Thalidomide/chemistry , Tosyl Compounds/chemistry , Androgen Antagonists/chemical synthesis , Androgen Antagonists/pharmacology , Anilides/pharmacology , Binding Sites , Cell Line , Chemistry Techniques, Synthetic , Humans , Models, Biological , Models, Molecular , Molecular Conformation , Molecular Structure , Nitriles/pharmacology , Protein Binding , Proteolysis/drug effects , Receptors, Androgen/metabolism , Structure-Activity Relationship , Thalidomide/pharmacology , Tosyl Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...