Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 8(22): 13871-8, 2016 Jun 08.
Article in English | MEDLINE | ID: mdl-27172376

ABSTRACT

Although the room-temperature rechargeable sodium-ion battery has emerged as an attractive alternative energy storage solution for large-scale deployment, major challenges toward practical sodium-ion battery technology remain including identification and engineering of anode materials that are both technologically feasible and economical. Herein, an antimony-based anode is developed by incorporating antimony into graphitic carbon matrices using low-cost materials and scalable processes. The composite anode exhibits excellent overall performance in terms of packing density, fast charge/discharge capability and cyclability, which is enabled by the conductive and compact graphitic network. A full cell design featuring this composite anode with a hexacyanometallate cathode achieves superior power output and low polarization, which offers the potential for realizing a high-performance, cost-effective sodium-ion battery.

2.
J Am Chem Soc ; 137(7): 2658-64, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25679040

ABSTRACT

Sodium is globally available, which makes a sodium-ion rechargeable battery preferable to a lithium-ion battery for large-scale storage of electrical energy, provided a host cathode for Na can be found that provides the necessary capacity, voltage, and cycle life at the prescribed charge/discharge rate. Low-cost hexacyanometallates are promising cathodes because of their ease of synthesis and rigid open framework that enables fast Na(+) insertion and extraction. Here we report an intriguing effect of interstitial H2O on the structure and electrochemical properties of sodium manganese(II) hexacyanoferrates(II) with the nominal composition Na2MnFe(CN)6·zH2O (Na2-δMnHFC). The newly discovered dehydrated Na2-δMnHFC phase exhibits superior electrochemical performance compared to other reported Na-ion cathode materials; it delivers at 3.5 V a reversible capacity of 150 mAh g(-1) in a sodium half cell and 140 mAh g(-1) in a full cell with a hard-carbon anode. At a charge/discharge rate of 20 C, the half-cell capacity is 120 mAh g(-1), and at 0.7 C, the cell exhibits 75% capacity retention after 500 cycles.

3.
ACS Appl Mater Interfaces ; 7(4): 2626-31, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25562593

ABSTRACT

Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In this study, we discover that doping graphene oxide into sucrose, the precursor for hard carbon, can effectively reduce the specific surface area of hard carbon to as low as 5.4 m(2)/g. We further reveal that such doping can effectively prevent foaming during caramelization of sucrose and extend the pyrolysis burnoff of sucrose caramel over a wider temperature range. The obtained low-surface-area hard carbon greatly improves the first-cycle Coulombic efficiency from 74% to 83% and delivers a very stable cyclic life with 95% of capacity retention after 200 cycles.

4.
J Am Chem Soc ; 137(7): 2548-54, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25615887

ABSTRACT

A novel air-stable sodium iron hexacyanoferrate (R-Na1.92Fe[Fe(CN)6]) with rhombohedral structure is demonstrated to be a scalable, low-cost cathode material for sodium-ion batteries exhibiting high capacity, long cycle life, and good rate capability. The cycling mechanism of the iron redox is clarified and understood through synchrotron-based soft X-ray absorption spectroscopy, which also reveals the correlation between the physical properties and the cell performance of this novel material. More importantly, successful preparation of a dehydrated iron hexacyanoferrate with high sodium-ion concentration enables the fabrication of a discharged sodium-ion battery with a non-sodium metal anode, and the manufacturing feasibility of low cost sodium-ion batteries with existing lithium-ion battery infrastructures has been tested.

SELECTION OF CITATIONS
SEARCH DETAIL
...