Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BioDrugs ; 37(2): 271-277, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36719640

ABSTRACT

BACKGROUND: Biologics, regardless of whether they are biosimilars or reference products, are inherently variable due to their size, complexity, and the manufacturing process involved to produce them. Since a drift or evolution of quality attributes of a biologic may impact its clinical safety or efficacy, it is critical for the manufacturer to carefully control the manufacturing process and monitor the quality attributes of a biologic. OBJECTIVE: The aim of this study was to demonstrate that the quality profile of the SB5 drug product has been consistent over its production history from 2013 to 2022. SB5 is a biosimilar referencing adalimumab (Humira, trademark of AbbVie Biotechnology Ltd) and SB5 has been approved by 14 regulatory authorities including the European Commission in August 2017 (brand name Imraldi™) and the US Food and Drug Administration in July 2019 (brand name Hadlima™). METHODS: A total of 93 SB5 drug product batches manufactured between 2013 and 2022 were analyzed for a series of release parameters to evaluate the consistency in their critical quality attributes including purity, charge variants, and functional activities (TNF-α binding activity and TNF-α neutralizing potency). RESULTS: The purity, charge variants, and functional activities of all batches were consistent over time and within the stringent acceptance criteria defined by regulatory agencies to ensure the safety and efficacy of SB5. CONCLUSION: The data presented in this study provide evidence that the quality of SB5 has remained consistent and tightly controlled even through process changes such as manufacturing site transfers and change in formulation.


Subject(s)
Biosimilar Pharmaceuticals , Humans , Adalimumab/therapeutic use , Biosimilar Pharmaceuticals/therapeutic use , Tumor Necrosis Factor-alpha
2.
Biologicals ; 58: 7-15, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30744947

ABSTRACT

A biosimilar is a biological medicinal product that is highly similar to an authorized biological product in terms of quality, biological activity, safety and efficacy. SB5 was developed by Samsung Bioepis as a biosimilar referencing adalimumab, and was authorized by the European Commission (EC) in August 2017 (Imraldi®). Extensive characterization studies were performed to demonstrate functional similarity of SB5 to reference adalimumab (Humira®, AbbVie Inc. and AbbVie Deutschland GmbH & Co. KG). SB5 and Humira® showed highly similar soluble TNF-α binding and neutralizing activity, as well as transmembrane TNF-α binding activity and reverse signaling induced in the membrane TNF-α expressing cell line. Both products exhibited similar binding of the Fc gamma receptors and Fc-related effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). In addition, additional mechanisms of action induced by TNF-α, such as cytokine release and expression of adhesion molecules, were analyzed and shown to be similar between SB5 and Humira®. Taken together, our results demonstrate that SB5 and Humira® are highly similar in terms of their functional characteristics.


Subject(s)
Adalimumab , Biosimilar Pharmaceuticals , Adalimumab/pharmacokinetics , Adalimumab/pharmacology , Biosimilar Pharmaceuticals/pharmacokinetics , Biosimilar Pharmaceuticals/pharmacology , Biosimilar Pharmaceuticals/standards , Humans , Jurkat Cells , Therapeutic Equivalency
3.
MAbs ; 11(1): 129-144, 2019 01.
Article in English | MEDLINE | ID: mdl-30296198

ABSTRACT

Biosimilars are biologic products that are highly similar to a licensed reference product in terms of quality, safety, and efficacy. SB5 is a biosimilar of Humira® (adalimumab) developed by Samsung Bioepis. To demonstrate its biosimilarity in quality to Humira®, we performed a comprehensive characterization in terms of structure, physicochemical properties, and biological properties following the International Conference on Harmonization, US Food and Drug Administration, and European Medicines Agency guidelines. We analyzed all available batches of SB5 and more than 100 EU- and US-sourced lots of Humira® using state-of-the-art methods whenever possible, and compared the two sets of data. The structural properties comprised primary and higher-order structures and N-glycosylation. The physicochemical characteristics were categorized into liquid chromatographic patterns and electrophoretic pattern concerning size and charge heterogeneity. The biological properties were examined by in vitro functional assays. Overall, SB5 and Humira® were shown to be similar to each other in terms of quality attributes. For some of the quality attributes, minor differences were observed. However, the observed differences have been adequately addressed and demonstrated these do not translate into clinically meaningful differences in terms of safety, purity, and potency.


Subject(s)
Adalimumab/chemistry , Adalimumab/immunology , Biosimilar Pharmaceuticals/chemistry , Humans
4.
MAbs ; 9(6): 968-977, 2017.
Article in English | MEDLINE | ID: mdl-28640663

ABSTRACT

As biosimilars enter the market, comparisons of product quality are needed. Manufacturing differences may lead to differences in critical quality attributes, which affect efficacy. Therefore, critical quality attributes (structure and biological activity) of Remicade® and of 2 biosimilar products (Flixabi®/Renflexis® and Remsima®/Inflectra®) were determined. We assessed binding to tumor necrosis factor in a fluorescence competitive binding assay; potency in a luciferase reporter gene assay; percentages of galactosylated glycan, afucose plus high mannosylated glycans, and charged glycan; FcγRIIIa (CD16) binding (assessed by 3 methods); and antibody-dependent cell-mediated cytotoxicity (ADCC) in the NK92-CD16a cell line and in peripheral blood mononuclear cells (PBMC). The results of Fab-related activity were similar for all products. Compared with Remicade®, Flixabi® had a lower percentage of charged glycan, and Remsima® had a higher percentage of galactosylated glycan and a lower percentage of afucose plus high mannosylated glycans. Whereas Remsima® and Remicade® are expressed in a Sp2/0 cell line, Flixabi® is expressed in a CHO cell line. Despite this difference, galactosylated glycans from the 3 products were not correlated with the expression system. The results of all 3 methods used in this study indicated that FcγRIIIa binding was lower with Remsima® than with Remicade®. The percentage of ADCC in NK92-CD16a cells was lower with Remsima® and higher with Flixabi® compared with Remicade®, but was similar for all 3 products in PBMC. Surface expression of CD16 was 5.7-fold greater on NK92-CD16a cells than on PBMC. Combined percentages of afucosylated and high mannosylated glycans were positively correlated with FcγRIIIa binding and ADCC in NK92-CD16 cells, while no correlation was observed in PBMC.

SELECTION OF CITATIONS
SEARCH DETAIL
...