Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol Methods ; 300: 114354, 2022 02.
Article in English | MEDLINE | ID: mdl-34774617

ABSTRACT

BACKGROUND: The cross-contamination of cell lines in culture is a persistent problem. Genetically modified L20B (Mouse) and RD (Human Rhabdomyosarcoma) cell lines are commonly used in poliovirus research, surveillance, and diagnostics. Cross-contamination between these cell lines leads to unreproducible results and unreliable surveillance data, negatively affecting public health. The gold standard method for cell authentication is Short Tandem Repeats analysis, which is time-consuming and expensive. The disadvantage of STR is limited detection of interspecies contamination. METHODS: This assay targets the mitochondrial cytochrome c oxidase subunit I (MTCO1) gene, a highly conserved and emergent DNA barcode region for detection of cross-contamination in RD and L20B cell lines. The MagNA Pure Compact instrument and ABI 7500 Fast Dx Real-time PCR systems were used for DNA extraction and to perform real-time PCR respectively. RESULTS: The newly developed assay is very sensitive with a limit of detection of 100 RD cells/1 million L20B/mL. The amplification efficiency and R2-value were 102.26% and 0.9969 respectively. We evaluated specificity of the assay with five human and four mouse cell lines, as well as monkey and rat cell lines. The assay showed no cross-reactivity with genomic DNA from human, mouse, rat, or monkey cell lines. The analytical sensitivity was also evaluated by spiking varying amounts of RD cells (0.001% - 10%) into L20B cells. There was no difference in CT values when running single-plex or duplex PCR reactions with similar experimental conditions. CONCLUSIONS: We have developed and validated a TaqMan real-time PCR assay, a sensitive method for the detection of cross-contamination of RD and L20B cell lines.


Subject(s)
Poliovirus , Animals , Cell Line , Haplorhini/genetics , Humans , Mice , Nucleic Acid Amplification Techniques , Poliovirus/genetics , Rats , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
2.
Sci Rep ; 11(1): 9682, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33958613

ABSTRACT

The need for high-affinity, SARS-CoV-2-specific monoclonal antibodies (mAbs) is critical in the face of the global COVID-19 pandemic, as such reagents can have important diagnostic, research, and therapeutic applications. Of greatest interest is the ~ 300 amino acid receptor binding domain (RBD) within the S1 subunit of the spike protein because of its key interaction with the human angiotensin converting enzyme 2 (hACE2) receptor present on many cell types, especially lung epithelial cells. We report here the development and functional characterization of 29 nM-affinity mouse SARS-CoV-2 mAbs created by an accelerated immunization and hybridoma screening process. Differing functions, including binding of diverse protein epitopes, viral neutralization, impact on RBD-hACE2 binding, and immunohistochemical staining of infected lung tissue, were correlated with variable gene usage and sequence.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Animals , COVID-19/diagnosis , COVID-19 Serological Testing , Epitopes/immunology , Female , Humans , Immunization , Mice , Mice, Inbred BALB C , Models, Molecular , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...