Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Small ; 19(11): e2203357, 2023 03.
Article in English | MEDLINE | ID: mdl-36642824

ABSTRACT

Three-dimensional (3D) cellular-resolution imaging of the living human retina over a large field of view will bring a great impact in clinical ophthalmology, potentially finding new biomarkers for early diagnosis and improving the pathophysiological understanding of ocular diseases. While hardware-based and computational adaptive optics (AO) optical coherence tomography (OCT) have been developed to achieve cellular-resolution retinal imaging, these approaches support limited 3D imaging fields, and their high cost and intrinsic hardware complexity limit their practical utility. Here, this work demonstrates 3D depth-invariant cellular-resolution imaging of the living human retina over a 3 × 3 mm field of view using the first intrinsically phase-stable multi-MHz retinal swept-source OCT and novel computational defocus and aberration correction methods. Single-acquisition imaging of photoreceptor cells, retinal nerve fiber layer, and retinal capillaries is presented across unprecedented imaging fields. By providing wide-field 3D cellular-resolution imaging in the human retina using a standard point-scan architecture routinely used in the clinic, this platform proposes a strategy for expanded utilization of high-resolution retinal imaging in both research and clinical settings.


Subject(s)
Retina , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Retina/diagnostic imaging , Imaging, Three-Dimensional/methods , Biomarkers
2.
Sensors (Basel) ; 20(23)2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33291510

ABSTRACT

Flexible tactile sensors are required to maintain conformal contact with target objects and to differentiate different tactile stimuli such as strain and pressure to achieve high sensing performance. However, many existing tactile sensors do not have the ability to distinguish strain from pressure. Moreover, because they lack intrinsic adhesion capability, they require additional adhesive tapes for surface attachment. Herein, we present a self-attachable, pressure-insensitive strain sensor that can firmly adhere to target objects and selectively perceive tensile strain with high sensitivity. The proposed strain sensor is mainly composed of a bioinspired micropillar adhesive layer and a selectively coated active carbon nanotube (CNT) layer. We show that the bioinspired adhesive layer enables strong self-attachment of the sensor to diverse planar and nonplanar surfaces with a maximum adhesion strength of 257 kPa, while the thin film configuration of the patterned CNT layer enables high strain sensitivity (gauge factor (GF) of 2.26) and pressure insensitivity.

3.
Foods ; 9(11)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33218182

ABSTRACT

Turmeric (Curcuma longa L.) is known for its health benefits. Several previous studies revealed that curcumin, the main active compound in turmeric, has antioxidant capacity. It has been previously demonstrated that puffing, the physical processing using high heat and pressure, of turmeric increases the antioxidant and anti-inflammatory activities by increasing phenolic compounds in the extract. The current study sought to determine if high hydrostatic pressure extraction (HHPE), a non-thermal extraction at over 100 MPa, aids in the chemical changes and antioxidant functioning of turmeric. 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) analyses were conducted and assessed the content of total phenol compounds in the extract. The chemical changes of curcuminoids were also determined by high performance liquid chromatography (HPLC). Among the three variables of ethanol concentration, pressure level, and treatment time, ethanol concentration was the most influential factor for the HHPE of turmeric. HHPE at 400 MPa for 20 min with 70% EtOH was the optimal extraction condition for the highest antioxidant activity. Compositional analysis revealed that 2-methoxy-4-vinylphenol was produced by puffing. Vanillic acid and ferulic acid content increased with increasing HHPE time. Synergistic effect was not observed on antioxidant activity when the turmeric was sequentially processed using puffing and HHPE.

4.
Sensors (Basel) ; 19(22)2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31703420

ABSTRACT

Of all the machinery and equipment used on construction sites, excavators are responsible for the greatest number of fatal accidents. Excavation is an inherently risky process due to imprecise work processes and the unstable external environment on most work sites. The resulting accidents cause serious injuries that threaten the lives of not only the excavator pilots but also those working around them. In this study, we propose a mechanical device that is capable of operating the excavator remotely from a nearby safe location such as a site office. To ensure worker safety and at the same time boost the productivity of excavation operations, data from 3D scanners, cameras, and sensors were combined to create a detailed 3D picture of the area surrounding the excavation site to guide a remotely operated excavating system. Rather than modifying the excavator itself, a removable manipulator was mounted on the joystick in the excavator's cockpit. Our proposed system was tested on a standard commercial excavator to verify its performance for a real-world excavation task.

5.
Article in English | WPRIM (Western Pacific) | ID: wpr-750454

ABSTRACT

@#Introduction: Anaplastic lymphoma kinase-positive (ALK+) anaplastic large cell lymphoma (ALCL) with a non-common pattern can be diagnostic challenging. Pathologists can be unavoidably and unintentionally blind to non-descript tumor cells in a lymphohistiocytic- (LH) or small-cell (SC)pattern. We report a case of primary systemic ALK+ ALCL with a SC pattern that presented as secondary gastric lesions with a mixed LH and SC pattern that was masqueraded as inflammatory lesions. Case Report: A 34-year-old woman with intractable epigastric pain was referred to have repeated endoscopy with biopsy. She was found to multiple gastric erosions and nodules that were diagnosed as inflammatory lesions both endoscopically and histologically. Meanwhile, she developed an acute onset of severe back pain associated with a pathologic compression fracture in the T3 thoracic vertebral body. Imaging studies disclosed a disseminated systemic disease involving abdominopelvic lymph nodes and cervical and thoracic vertebral bodies. The needle biopsy of the pelvic lymph node disclosed diffuse proliferation of monomorphic small round cells that were diffusely positive for CD30 and ALK. A diagnosis of ALK+ ALCL with a monomorphic SC pattern was rendered. Discussion: A retrospective review of the gastric biopsies with the aid of immunohistochemistry enabled us to recognise the presence of lymphomatous infiltrates with a mixed LH and SC pattern in every piece of gastric biopsies that were repeatedly misdiagnosed as inflammatory lesions. This case illustrates a significant diagnostic pitfall of the LH- and SC-patterns in ALK+ ALCL, in which the tumour cells featuring lymphoid, plasmacytoid or histiocytoid appearance can be masqueraded as inflammatory cells.


Subject(s)
Lymphoma, Large-Cell, Anaplastic
6.
Int J Environ Res Public Health ; 8(9): 3777-95, 2011 09.
Article in English | MEDLINE | ID: mdl-22016716

ABSTRACT

The past oil crises have caused dramatic improvements in fuel efficiency in all industrial sectors. The aviation sector-aircraft manufacturers and airlines-has also made significant efforts to improve the fuel efficiency through more advanced jet engines, high-lift wing designs, and lighter airframe materials. However, the innovations in energy-saving aircraft technologies do not coincide with the oil crisis periods. The largest improvement in aircraft fuel efficiency took place in the 1960s while the high oil prices in the 1970s and on did not induce manufacturers or airlines to achieve a faster rate of innovation. In this paper, we employ a historical analysis to examine the socio-economic reasons behind the relatively slow technological innovation in aircraft fuel efficiency over the last 40 years. Based on the industry and passenger behaviors studied and prospects for alternative fuel options, this paper offers insights for the aviation sector to shift toward more sustainable technological options in the medium term. Second-generation biofuels could be the feasible option with a meaningful reduction in aviation's lifecycle environmental impact if they can achieve sufficient economies of scale.


Subject(s)
Aviation/history , Conservation of Energy Resources/history , Renewable Energy/history , Technology/history , Aircraft/history , Aviation/economics , Aviation/trends , Conservation of Energy Resources/trends , Costs and Cost Analysis , History, 20th Century , History, 21st Century , Public Opinion , Renewable Energy/economics , Technology/trends , Travel/economics , Travel/trends
7.
Article in English | MEDLINE | ID: mdl-19163603

ABSTRACT

Automatic detection of suspicious pain regions is very useful in the medical digital infrared thermal imaging research area. To detect those regions, we use the SOFES (Survival Of the Fitness kind of the Evolution Strategy) algorithm which is one of the multimodal function optimization methods. We apply this algorithm to famous diseases, such as a foot of the glycosuria, the degenerative arthritis and the varicose vein. The SOFES algorithm is available to detect some hot spots or warm lines as veins. And according to a hundred of trials, the algorithm is very fast to converge.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Pain/diagnosis , Thermography/methods , Veins/pathology , Algorithms , Equipment Design , Hot Temperature , Humans , Infrared Rays , Male , Skin Temperature , Software , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...