Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 6: 7278, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26065407

ABSTRACT

Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium-sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium-sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium-sulfur cells display discharge capacity of 945 mAh g(-1) after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li(+)-ion transfer rate, affording a rate performance of 1210, mAh g(-1) at 0.1 C and 730 mAh g(-1) at 5 C.

2.
Angew Chem Int Ed Engl ; 54(36): 10497-501, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26087954

ABSTRACT

A new method to develop two-dimensional PANI nanosheets using ice as a removable hard template is presented. Distinctly high current flows of 5.5 mA at 1 V and a high electrical conductivity of 35 S cm(-1) were obtained for the polyaniline (PANI) nanosheets, which marked a significant improvement from previously values on other PANIs reported over the past decades. These improved electrical properties of ice-templated PANI nanosheets were attributed to the long-range ordered edge-on π-stacking of the quinoid ring, ascribed to the ice surface-assisted vertical growth of PANI. The unprecedented advantages of the ice-templated PANI nanosheets are two-fold. First, the PANI nanosheet can be easily transferred onto various types of substrates via float-off from the ice surfaces. Second, PANI can be patterned into any shape using predetermined masks, and this is expected to facilitate the eventual convenient and inexpensive application of conducting polymers in versatile electronic device forms.

SELECTION OF CITATIONS
SEARCH DETAIL
...