Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Healthcare (Basel) ; 11(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36766956

ABSTRACT

The format used to communicate probability-verbal versus numerical descriptors-can impact risk perceptions and behaviors. This issue is salient for the Coronavirus disease 2019 (COVID-19), where concerns about vaccine-related risks may reduce uptake and verbal descriptors have been widely used by public health, news organizations and on social media, to convey risk. Because the effect of risk-communication format on perceived COVID-19 vaccine-related risks remains unknown, we conducted an online randomized survey among 939 US adults. Participants were given risk information, using verbal or numerical descriptors and were asked to report their perceived risk of experiencing headache, fever, fatigue or myocarditis from COVID-19 vaccine. Associations between risk communication format and perceived risk were assessed using multivariable regression. Compared to numerical estimates, verbal descriptors were associated with higher perceived risk of headache (ß = 5.0 percentage points, 95% CI = 2.0-8.1), fever (ß = 27 percentage points, 95% CI = 23-30), fatigue (ß = 4.9 percentage points, 95% = CI 1.8-8.0) and myocarditis (ß = 4.6 percentage points, 95% CI = 2.1-7.2), as well as greater variability in risk perceptions. Social media influence was associated with differences in risk perceptions for myocarditis, but not side effects. Verbal descriptors may lead to greater, more inaccurate and variable vaccine-related risk perceptions compared to numerical descriptors.

3.
ACS Comb Sci ; 21(6): 445-455, 2019 06 10.
Article in English | MEDLINE | ID: mdl-31063348

ABSTRACT

Though the synthesis of libraries of multicomponent metal oxide systems is prevalent using the combinatorial approach, the combinatorial approach has been rarely realized in studying simple metal oxides, especially applied to the atomic layer deposition (ALD) technique. In this literature, a novel combinatorial approach technique is utilized within an ALD grown simple metal oxide to synthesize a "spatially addressable combinatorial library". The two key factors in gradients were defined during the ALD process: (1) the process temperature and (2) a nonuniform flow of pulsed gases inside a cross-flow reactor. To validate the feasibility of our novel combinatorial approach, a case study of zinc oxide (ZnO), a simple metal oxide whose properties are well-known, is performed. Because of the induced gradient, the ZnO (002) crystallite size was found to gradually vary across a 100 mm wafer (∼10-20 nm) with a corresponding increase in the normalized Raman E2/A1 peak intensity ratio. The findings agree well with the visible grain size observed from scanning electron microscope. The novel combinatorial approach provides a means of systematical interpretation of the combined effect of the two gradients, especially in the analysis of the microstructure of ZnO crystals. Moreover, the combinatorial library reveals that the process temperature, rather than the crystal size, plays the most significant role in determining the electrical conductivity of ZnO.


Subject(s)
Nanostructures/chemistry , Zinc Oxide/chemistry , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Electric Conductivity
4.
ACS Appl Mater Interfaces ; 11(5): 5208-5214, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30652846

ABSTRACT

Increasing interest in the development of alternative energy storage technologies has led to efforts being taken to improve the energy density of dielectric capacitors with high power density. However, dielectric polymer materials still have low energy densities because of their low dielectric constant, whereas Pb-based materials are limited by environmental issues and regulations. Here, the energy storage behaviors of atomic layer-deposited Hf1- XZr XO2 ( X = 0-1) thin films (10 nm) and the phase transformation mechanism associated with an enhancement of their energy density are reported using unipolar pulse measurements. Based on electrical and material characterization, the energy density and energy efficiency are dependent on the Zr content, and stress-induced crystallization by the encapsulating Hf1- XZr XO2 films with TiN top electrodes prior to annealing can enhance the energy density (up to 47 J/cm3 at a small voltage value of 3.5 MV/cm) while minimizing energy loss even at low process temperatures (400 °C). This work will facilitate the realization of Hf1- XZr XO2-based capacitors for lead-free electrostatic energy storage applications.

5.
ACS Appl Mater Interfaces ; 10(51): 44825-44833, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30485061

ABSTRACT

Correlations between physical properties linking film quality with wet etch rate (WER), one of the leading figures of merit, in plasma-enhanced atomic layer deposition (PEALD) grown silicon nitride (SiN x) films remain largely unresearched. Achieving a low WER of a SiN x film is especially significant in its use as an etch stopper for technology beyond 7 nm node semiconductor processing. Herein, we explore the correlation between the hydrogen concentration, hydrogen bonding states, bulk film density, residual impurity concentration, and the WERs of PEALD SiN x using Fourier transform infrared spectrometry, X-ray reflectivity, and spectroscopic ellipsometry, etc. PEALD SiN x films for this study were deposited using hexachlorodisilane and hollow cathode plasma source under a range of process temperatures (270-360 °C) and plasma gas compositions (N2/NH3 or Ar/NH3) to understand the influence of hydrogen concentration, hydrogen bonding states, bulk film density, and residual impurity concentration on the WER. Varying hydrogen concentration and differences in the hydrogen bonding states resulted in different bulk film densities and, accordingly, a variation in WER. We observe a linear relationship between hydrogen bonding concentration and WER as well as a reciprocal relationship between bulk film density and WER. Analogous to the PECVD SiN x processes, a reduction in hydrogen bonding concentration arises from either (1) thermal activation or (2) plasma excited species. However, unlike the case with silane (SiH4)-based PECVD SiN x, PEALD SiN x WERs are affected by residual impurities of Si precursors (i.e., chlorine impurity). Thus, possible wet etching mechanisms in HF in which the WER is affected by hydrogen bonding states or residual impurities are proposed. The shifts of amine basicity in SiN x due to different hydrogen bonding states and the changes in Si electrophilicity due to Cl impurity content are suggested as the main mechanisms that influence WER in the PEALD processes.

6.
ACS Appl Mater Interfaces ; 10(16): 14116-14123, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29551067

ABSTRACT

In this work, a novel chlorodisilane precursor, pentachlorodisilane (PCDS, HSi2Cl5), was investigated for the growth of silicon nitride (SiN x) via hollow cathode plasma-enhanced atomic layer deposition (PEALD). A well-defined self-limiting growth behavior was successfully demonstrated over the growth temperature range of 270-360 °C. At identical process conditions, PCDS not only demonstrated approximately >20% higher growth per cycle than that of a commercially available chlorodisilane precursor, hexachlorodisilane (Si2Cl6), but also delivered a better or at least comparable film quality determined by characterizing the refractive index, wet etch rate, and density of the films. The composition of the SiN x films grown at 360 °C using PCDS, as determined by X-ray photoelectron spectroscopy, showed low O content (∼2 at. %) and Cl content (<1 at. %; below the detection limit). Fourier transform infrared spectroscopy spectra suggested that N-H bonds were the dominant hydrogen-containing bonds in the SiN x films without a significant amount of Si-H bonds originating from the precursor molecules. The possible surface reaction pathways of the PEALD SiN x using PCDS on the surface terminated with amine groups (-NH2 and -NH-) are proposed. The PEALD SiN x films grown using PCDS also exhibited a leakage current density as low as 1-2 nA/cm2 at 2 MV/cm and a breakdown electric field as high as ∼12 MV/cm.

7.
Materials (Basel) ; 9(12)2016 Dec 12.
Article in English | MEDLINE | ID: mdl-28774125

ABSTRACT

With the continued miniaturization of devices in the semiconductor industry, atomic layer deposition (ALD) of silicon nitride thin films (SiNx) has attracted great interest due to the inherent benefits of this process compared to other silicon nitride thin film deposition techniques. These benefits include not only high conformality and atomic-scale thickness control, but also low deposition temperatures. Over the past 20 years, recognition of the remarkable features of SiNx ALD, reinforced by experimental and theoretical investigations of the underlying surface reaction mechanism, has contributed to the development and widespread use of ALD SiNx thin films in both laboratory studies and industrial applications. Such recognition has spurred ever-increasing opportunities for the applications of the SiNx ALD technique in various arenas. Nevertheless, this technique still faces a number of challenges, which should be addressed through a collaborative effort between academia and industry. It is expected that the SiNx ALD will be further perceived as an indispensable technique for scaling next-generation ultra-large-scale integration (ULSI) technology. In this review, the authors examine the current research progress, challenges and future prospects of the SiNx ALD technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...