Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Microbiol ; 76(1): 173-89, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20149103

ABSTRACT

The bacterium Caulobacter crescentus has morphologically and functionally distinct cell poles that undergo sequential changes during the cell cycle. We show that the PopZ oligomeric network forms polar ribosome exclusion zones that change function during cell cycle progression. The parS/ParB chromosomal centromere is tethered to PopZ at one pole prior to the initiation of DNA replication. During polar maturation, the PopZ-centromere tether is broken, and the PopZ zone at that pole then switches function to act as a recruitment factor for the ordered addition of multiple proteins that promote the transformation of the flagellated pole into a stalked pole. Stalked pole assembly, in turn, triggers the initiation of chromosome replication, which signals the formation of a new PopZ zone at the opposite cell pole, where it functions to anchor the newly duplicated centromere that has traversed the long axis of the cell. We propose that pole-specific control of PopZ function co-ordinates polar development and cell cycle progression by enabling independent assembly and tethering activities at the two cell poles.


Subject(s)
Bacterial Proteins/metabolism , Caulobacter crescentus/physiology , Cell Cycle , Cell Polarity , Caulobacter crescentus/metabolism , Centromere/metabolism , Chromosomes, Bacterial/metabolism , DNA Replication , DNA, Bacterial/metabolism , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Microscopy, Immunoelectron , Models, Biological , Models, Molecular , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL
...