Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38670928

ABSTRACT

Spin-to-charge conversion at the interface between magnetic materials and transition metal dichalcogenides has drawn great interest in the research efforts to develop fast and ultralow power consumption devices for spintronic applications. Here, we report room temperature observations of spin-to-charge conversion arising from the interface of Ni80Fe20 (Py) and molybdenum disulfide (MoS2). This phenomenon can be characterized by the inverse Edelstein effect length (λIEE), which is enhanced with decreasing MoS2 thicknesses, demonstrating the dominant role of spin-orbital coupling (SOC) in MoS2. The spin-to-charge conversion can be significantly improved by inserting a Cu interlayer between Py and MoS2, suggesting that the Cu interlayer can prevent magnetic proximity effect from the Py layer and protect the SOC on the MoS2 surface from exchange interactions with Py. Furthermore, the Cu-MoS2 interface can enhance the spin current and improve electronic transport. Our results suggest that tailoring the interface of magnetic heterostructures provides an alternative strategy for the development of spintronic devices to achieve higher spin-to-charge conversion efficiencies.

2.
Nanomaterials (Basel) ; 13(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37049369

ABSTRACT

Tungsten disulfide (WS2) was prepared from W metal and WO3 by ion beam sputtering and sulfurization in a different number of layers, including monolayer, bilayer, six-layer, and nine-layer. To obtain better crystallinity, the nine-layer of WS2 was also prepared from W metal and sulfurized in a furnace at different temperatures (800, 850, 900, and 950 °C). X-ray diffraction revealed that WS2 has a 2-H crystal structure and the crystallinity improved with increasing sulfurization temperature, while the crystallinity of WS2 sulfurized from WO3 (WS2-WO3) is better than that sulfurized from W-metal (WS2-W). Raman spectra show that the full-width at half maximum (FWHM) of WS2-WO3 is narrower than that of WS2-W. We demonstrate that high-quality monocrystalline WS2 thin films can be prepared at wafer scale by sulfurization of WO3. The photoluminescence of the WS2 monolayer is strongly enhanced and centered at 1.98 eV. The transmittance of the WS2 monolayer exceeds 80%, and the measured band gap is 1.9 eV, as shown by ultraviolet-visible-infrared spectroscopy.

3.
Nanomaterials (Basel) ; 12(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36296876

ABSTRACT

The spin-to-charge conversion in Permalloy (Py)/Cu/Bi2Se3 is tunable by changing the Cu layer thickness. The conversion rate was studied using the spin pumping technique. The inverse Edelstein effect (IEE) length λIEE is found to increase up to ~2.7 nm when a 7 nm Cu layer is introduced. Interestingly, the maximized λIEE is obtained when the effective spin-mixing conductance (and thus Js) is decreased due to Cu insertion. The monotonic increase in λIEE with decreasing Js suggests that the IEE relaxation time (τ) is enhanced due to the additional tunnelling barrier (Cu layer) that limits the interfacial transmission rate. The results demonstrate the importance of interface engineering in the magnetic heterostructure of Py/topological insulators (TIs), the key factor in optimizing spin-to-charge conversion efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...