Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Biomaterials ; 307: 122522, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38428092

ABSTRACT

Cellular skin substitutes such as epidermal constructs have been developed for various applications, including wound healing and skin regeneration. These cellular models are mostly derived from primary cells such as keratinocytes and fibroblasts in a two-dimensional (2D) state, and further development of three-dimensional (3D) cultured organoids is needed to provide insight into the in vivo epidermal phenotype and physiology. Here, we report the development of epidermal organoids (EpiOs) generated from induced pluripotent stem cells (iPSCs) as a novel epidermal construct and its application as a source of secreted biomolecules recovered by extracellular vesicles (EVs) that can be utilized for cell-free therapy of regenerative medicine. Differentiated iPSC-derived epidermal organoids (iEpiOs) are easily cultured and expanded through multiple organoid passages, while retaining molecular and functional features similar to in vivo epidermis. These mature iEpiOs contain epidermal stem cell populations and retain the ability to further differentiate into other skin compartment lineages, such as hair follicle stem cells. By closely recapitulating the epidermal structure, iEpiOs are expected to provide a more relevant microenvironment to influence cellular processes and therapeutic response. Indeed, iEpiOs can generate high-performance EVs containing high levels of the angiogenic growth factor VEGF and miRNAs predicted to regulate cellular processes such as proliferation, migration, differentiation, and angiogenesis. These EVs contribute to target cell proliferation, migration, and angiogenesis, providing a promising therapeutic tool for in vivo wound healing. Overall, the newly developed iEpiOs strategy as an organoid-based approach provides a powerful model for studying basic and translational skin research and may also lead to future therapeutic applications using iEpiOs-secreted EVs.


Subject(s)
Extracellular Vesicles , Pluripotent Stem Cells , Epidermis , Cell Differentiation , Organoids , Regeneration
2.
Cell Mol Life Sci ; 81(1): 142, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38485770

ABSTRACT

Thioredoxin interacting protein (Txnip) is a stress-responsive factor regulating Trx1 for redox balance and involved in diverse cellular processes including proliferation, differentiation, apoptosis, inflammation, and metabolism. However, the biological role of Txnip function in stem cell pluripotency has yet to be investigated. Here, we reveal the novel functions of mouse Txnip in cellular reprogramming and differentiation onset by involving in glucose-mediated histone acetylation and the regulation of Oct4, which is a fundamental component of the molecular circuitry underlying pluripotency. During reprogramming or PSC differentiation process, cellular metabolic and chromatin remodeling occur in order to change its cellular fate. Txnip knockout promotes induced pluripotency but hinders initial differentiation by activating pluripotency factors and promoting glycolysis. This alteration affects the intracellular levels of acetyl-coA, a final product of enhanced glycolysis, resulting in sustained histone acetylation on active PSC gene regions. Moreover, Txnip directly interacts with Oct4, thereby repressing its activity and consequently deregulating Oct4 target gene transcriptions. Our work suggests that control of Txnip expression is crucial for cell fate transitions by modulating the entry and exit of pluripotency.


Subject(s)
Cellular Reprogramming , Histones , Animals , Mice , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Differentiation/genetics , Histones/metabolism , Protein Processing, Post-Translational , Thioredoxins/genetics , Thioredoxins/metabolism
3.
Exp Mol Med ; 54(11): 1901-1912, 2022 11.
Article in English | MEDLINE | ID: mdl-36352257

ABSTRACT

Although many cohort studies have reported that long-term exposure to particulate matter (PM) can cause lung cancer, the molecular mechanisms underlying the PM-induced increase in cancer metastasis remain unclear. To determine whether PM contributes to cancer metastasis, cancer cells were cultured with conditioned medium from PM-treated THP1 cells, and the migration ability of the treated cancer cells was assessed. The key molecules involved were identified using RNA-seq analysis. In addition, metastatic ability was analyzed in vivo by injection of cancer cells into the tail vein and intratracheal injection of PM into the lungs of C57BL/6 mice. We found that PM enhances the expression of heparin-binding EGF-like growth factor (HBEGF) in macrophages, which induces epithelial-to-mesenchymal transition (EMT) in cancer cells, thereby increasing metastasis. Macrophage stimulation by PM results in activation and subsequent nuclear translocation of the aryl hydrocarbon receptor and upregulation of HBEGF. Secreted HBEGF activates EGFR on the cancer cell surface to induce EMT, resulting in increased migration and invasion in vitro and increased metastasis in vivo. Therefore, our study reveals a critical PM-macrophage-cancer cell signaling axis mediating EMT and metastasis and provides an effective therapeutic approach for PM-induced malignancy.


Subject(s)
Epithelial-Mesenchymal Transition , Heparin-binding EGF-like Growth Factor , Macrophages , Neoplasm Metastasis , Particulate Matter , Animals , Mice , Cell Line, Tumor , Heparin-binding EGF-like Growth Factor/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Particulate Matter/adverse effects
4.
J Exp Clin Cancer Res ; 41(1): 212, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35768842

ABSTRACT

BACKGROUND: Identifying biomarkers related to the diagnosis and treatment of gastric cancer (GC) has not made significant progress due to the heterogeneity of tumors. Genes involved in histological classification and genetic correlation studies are essential to develop an appropriate treatment for GC. METHODS: In vitro and in vivo lentiviral shRNA library screening was performed. The expression of Synaptotagmin (SYT11) in the tumor tissues of patients with GC was confirmed by performing Immunohistochemistry, and the correlation between the expression level and the patient's survival rate was analyzed. Phospho-kinase array was performed to detect Jun N-terminal kinase (JNK) phosphorylation. SYT11, JNK, and MKK7 complex formation was confirmed by western blot and immunoprecipitation assays. We studied the effects of SYT11 on GC proliferation and metastasis, real-time cell image analysis, adhesion assay, invasion assay, spheroid formation, mouse xenograft assay, and liver metastasis. RESULTS: SYT11 is highly expressed in the stem-like molecular subtype of GC in transcriptome analysis of 527 patients with GC. Moreover, SYT11 is a potential prognostic biomarker for histologically classified diffuse-type GC. SYT11 functions as a scaffold protein, binding both MKK7 and JNK1 signaling molecules that play a role in JNK1 phosphorylation. In turn, JNK activation leads to a signaling cascade resulting in cJun activation and expression of downstream genes angiopoietin-like 2 (ANGPTL2), thrombospondin 4 (THBS4), Vimentin, and junctional adhesion molecule 3 (JAM3), which play a role in epithelial-mesenchymal transition (EMT). SNU484 cells infected with SYT11 shRNA (shSYT11) exhibited reduced spheroid formation, mouse tumor formation, and liver metastasis, suggesting a pro-oncogenic role of SYT11. Furthermore, SYT11-antisense oligonucleotide (ASO) displayed antitumor activity in our mouse xenograft model and was conferred an anti-proliferative effect in SNU484 and MKN1 cells. CONCLUSION: SYT11 could be a potential therapeutic target as well as a prognostic biomarker in patients with diffuse-type GC, and SYT11-ASO could be used in therapeutic agent development for stem-like molecular subtype diffuse GC.


Subject(s)
Angiopoietin-Like Protein 2 , MAP Kinase Kinase 7 , MAP Kinase Signaling System , Stomach Neoplasms , Synaptotagmins , Angiopoietin-Like Protein 2/metabolism , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinogenesis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Heterografts , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , MAP Kinase Kinase 7/metabolism , Mice , RNA, Small Interfering/pharmacology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Synaptotagmins/biosynthesis , Synaptotagmins/genetics , Synaptotagmins/metabolism
5.
Nanomaterials (Basel) ; 12(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35159733

ABSTRACT

In this study, we developed an effective and rapid process for nanoscale ink printing, direct laser interference ink printing (DLIIP), which involves the photothermal reaction of a copper-based metal-organic decomposition ink. A periodically lined copper pattern with a width of 500 nm was printed on a 240 µm-wide line at a fabrication speed of 17 mm/s under an ambient environment and without any pre- or post-processing steps. This pattern had a resistivity of 3.5 µΩ∙cm, and it was found to exhibit a low oxidation state that was twice as high as that of bulk copper. These results demonstrate the feasibility of DLIIP for nanoscale copper printing with fine electrical characteristics.

6.
EMBO Mol Med ; 14(1): e14678, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34842355

ABSTRACT

Shiga toxins (Stxs) produced by enterohemorrhagic Escherichia coli (EHEC) are the major virulence factors responsible for hemorrhagic colitis, which can lead to life-threatening systemic complications including acute renal failure (hemolytic uremic syndrome) and neuropathy. Here, we report that O-GlcNAcylation, a type of post-translational modification, was acutely increased upon induction of endoplasmic reticulum (ER) stress in host cells by Stxs. Suppression of the abnormal Stx-mediated increase in O-GlcNAcylation effectively inhibited apoptotic and inflammatory responses in Stx-susceptible cells. The protective effect of O-GlcNAc inhibition for Stx-mediated pathogenic responses was also verified using three-dimensional (3D)-cultured spheroids or organoids mimicking the human kidney. Treatment with an O-GlcNAcylation inhibitor remarkably improved the major disease symptoms and survival rate for mice intraperitoneally injected with a lethal dose of Stx. In conclusion, this study elucidates O-GlcNAcylation-dependent pathogenic mechanisms of Stxs and demonstrates that inhibition of aberrant O-GlcNAcylation is a potential approach to treat Stx-mediated diseases.


Subject(s)
Escherichia coli Infections , Hemolytic-Uremic Syndrome , Animals , Endoplasmic Reticulum Stress , Hemolytic-Uremic Syndrome/pathology , Kidney/pathology , Mice , Shiga Toxin/metabolism , Shiga Toxins
7.
Exp Neurobiol ; 30(4): 263-274, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34483141

ABSTRACT

Intellectual disability (ID) is a neurodevelopmental disorder defined by below-average intelligence (intelligence quotient of <70) accompanied by adaptive behavior deficits. Defects in the functions of neural stem cells during brain development are closely linked to the pathogenesis of ID. To understand the molecular etiology of ID, we examined neural stem cells from individuals with Duchenne muscular dystrophy (DMD), a genetic disorder in which approximately one-third of the patients exhibit ID. In this study, we generated induced pluripotent stem cells from peripheral blood mononuclear cells from a normal individual and DMD patients with and without ID to identify ID-specific functional and molecular abnormalities. We found defects in neural ectoderm formation in the group of DMD patients with ID. Our transcriptome analysis of patient-derived neural stem cells revealed altered expression of genes related to the hippo signaling pathway and neuroactive ligand-receptor interaction, implicating these in the pathogenesis of ID in patients with DMD.

8.
Int J Biol Sci ; 17(7): 1644-1659, 2021.
Article in English | MEDLINE | ID: mdl-33994850

ABSTRACT

Tumor-initiating cells or cancer stem cells are a subset of cancer cells that have tumorigenic potential in human cancer. Although several markers have been proposed to distinguish tumor-initiating cells from colorectal cancer cells, little is known about how this subpopulation contributes to tumorigenesis. Here, we characterized a tumor-initiating cell subpopulation from Caco-2 colorectal cancer cells. Based on the findings that Caco-2 cell subpopulations express different cell surface markers, we were able to discriminate three main fractions, CD44-CD133-, CD44-CD133+, and CD44+CD133+ subsets, and characterized their biochemical and tumorigenic properties. Our results show that CD44+CD133+ cells possessed an unusual capacity to proliferate and could form tumors when transplanted into NSG mice. Additionally, primary tumors grown from CD44+CD133+ Caco-2 cells contained mixed populations of CD44+CD133+ and non-CD44+CD133+ Caco-2 cells, indicating that the full phenotypic heterogeneity of the parental Caco-2 cells was re-created. Notably, only the CD44+CD133+ subset of Caco-2-derived primary tumors had tumorigenic potential in NSG mice, and the tumor growth of CD44+CD133+ cells was faster in secondary xenografts than in primary transplants. Gene expression analysis revealed that the Wnt/ß-catenin pathway was over-activated in CD44+CD133+ cells, and the growth and tumorigenic potential of this subpopulation were significantly suppressed by small-molecule Wnt/ß-catenin signaling inhibitors. Our findings suggest that the CD44+CD133+ subpopulation from Caco-2 cells was highly enriched in tumorigenic cells and will be useful for investigating the mechanisms leading to human colorectal cancer development.


Subject(s)
AC133 Antigen/genetics , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Hyaluronan Receptors/genetics , Wnt Signaling Pathway/genetics , beta Catenin/genetics , AC133 Antigen/biosynthesis , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/genetics , Caco-2 Cells , Cell Transformation, Neoplastic , Humans , Hyaluronan Receptors/biosynthesis , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , beta Catenin/biosynthesis
9.
Int J Mol Sci ; 21(24)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327533

ABSTRACT

The function of natural killer (NK) cell-derived interferon-γ (IFN-γ) expands to remove pathogens by increasing the ability of innate immune cells. Here, we identified the critical role of thioredoxin-interacting protein (TXNIP) in the production of IFN-γ in NK cells during bacterial infection. TXNIP inhibited the production of IFN-γ and the activation of transforming growth factor ß-activated kinase 1 (TAK1) activity in primary mouse and human NK cells. TXNIP directly interacted with TAK1 and inhibited TAK1 activity by interfering with the complex formation between TAK1 and TAK1 binding protein 1 (TAB1). Txnip-/- (KO) NK cells enhanced the activation of macrophages by inducing IFN-γ production during Pam3CSK4 stimulation or Staphylococcus aureus (S. aureus) infection and contributed to expedite the bacterial clearance. Our findings suggest that NK cell-derived IFN-γ is critical for host defense and that TXNIP plays an important role as an inhibitor of NK cell-mediated macrophage activation by inhibiting the production of IFN-γ during bacterial infection.


Subject(s)
Carrier Proteins/metabolism , Interferon-gamma/metabolism , Killer Cells, Natural/metabolism , Thioredoxins/metabolism , Animals , Carrier Proteins/genetics , Enzyme-Linked Immunosorbent Assay , Immunity, Innate/drug effects , Immunity, Innate/genetics , Killer Cells, Natural/immunology , Lipopeptides/pharmacology , Mice , Mice, Knockout , Staphylococcal Infections/genetics , Staphylococcal Infections/immunology , Staphylococcal Infections/metabolism , Staphylococcus aureus/pathogenicity , Thioredoxins/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
10.
Int J Mol Sci ; 21(21)2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33121189

ABSTRACT

Immunotherapy is extensively investigated for almost all types of hematologic tumors, from preleukemic to relapse/refractory malignancies. Due to the emergence of technologies for target cell characterization, antibody design and manufacturing, as well as genome editing, immunotherapies including gene and cell therapies are becoming increasingly elaborate and diversified. Understanding the tumor immune microenvironment of the target disease is critical, as is reducing toxicity. Although there have been many successes and newly FDA-approved immunotherapies for hematologic malignancies, we have learned that insufficient efficacy due to disease relapse following treatment is one of the key obstacles for developing successful therapeutic regimens. Thus, combination therapies are also being explored. In this review, immunotherapies for each type of hematologic malignancy will be introduced, and novel targets that are under investigation will be described.


Subject(s)
Hematologic Neoplasms/therapy , Immunotherapy/methods , Cell- and Tissue-Based Therapy , Combined Modality Therapy , Genetic Therapy , Hematologic Neoplasms/immunology , Humans , Immunologic Factors/therapeutic use , Tumor Microenvironment
11.
Int J Mol Sci ; 21(13)2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32640596

ABSTRACT

The regulation of hematopoietic stem cell (HSC) fate decision, whether they keep quiescence, self-renew, or differentiate into blood lineage cells, is critical for maintaining the immune system throughout one's lifetime. As HSCs are exposed to age-related stress, they gradually lose their self-renewal and regenerative capacity. Recently, many reports have implicated signaling pathways in the regulation of HSC fate determination and malignancies under aging stress or pathophysiological conditions. In this review, we focus on the current understanding of signaling pathways that regulate HSC fate including quiescence, self-renewal, and differentiation during aging, and additionally introduce pharmacological approaches to rescue defects of HSC fate determination or hematopoietic malignancies by kinase signaling pathways.


Subject(s)
Aging , Cell Differentiation , Cell Self Renewal , Hematologic Neoplasms/pathology , Hematopoietic Stem Cells/metabolism , Signal Transduction , Animals , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Humans
12.
Cancers (Basel) ; 11(12)2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31816819

ABSTRACT

Although gastric cancer is a common cause of cancer mortality worldwide, its biological heterogeneity limits the available therapeutic options. Therefore, identifying novel therapeutic targets for developing effective targeted therapy of gastric cancer is a pressing need. Here, we investigate molecular function and regulatory mechanisms of Vestigial-like 1 (VGLL1) in gastric cancer. Microarray analysis of 556 gastric cancer tissues revealed that VGLL1 was a prognostic biomarker that correlated with PI3KCA and PI3KCB. VGLL1 regulates the proliferation of gastric cancer cells, as shown in live cell imaging, sphere formation, and in vivo xenograft model. Tail vein injection of NUGC3 cells expressing shVGLL1 resulted in less lung metastasis occurring when compared to the control. In contrast, larger metastatic lesions in lung and liver were detected in the VGLL1-overexpressing NUGC3 cell xenograft excision mouse model. Importantly, VGLL1 expression is transcriptionally regulated by the PI3K-AKT-ß-catenin pathway. Subsequently, MMP9, a key molecule in gastric cancer, was explored as one of target genes that were transcribed by VGLL1-TEAD4 complex, a component of the transcription factor. Taken together, PI3K/AKT/ß-catenin signaling regulates the transcription of VGLL1, which promotes the proliferation and metastasis in gastric cancer. This finding suggests VGLL1 as a novel prognostic biomarker and a potential therapeutic target.

13.
Sci Rep ; 9(1): 8012, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31527598

ABSTRACT

A series of new functionalized 3-indolylindolin-2-ones, 3-(1-methylpyrrol-2-yl)indolin-2-ones, and 3-(thiophen-2-yl)indolin-2-ones were synthesized by using novel indium (III)-catalysed reaction of various 3-diazoindolin-2-ones with indoles, 1-methylpyrrole, or thiophene via one-pot procedure. The newly synthesized compounds were characterized and screened for their in vitro antibacterial activity against various Staphylococcus species, including methicillin-resistant Staphylococcus aureus. results revealed that five compounds KS15, KS16, KS17, KS19, and KS20 exhibited potent and specific antibacterial activity against Staphylococcus species albeit inactive against Gram-negative bacteria. Especially, compounds exhibited superior antibacterial potency against Staphylococcus epidermidis compared to the reference drug streptomycin. The most potential compound KS16 also increased the susceptibility of Staphylococcus aureus to ciprofloxacin, gentamicin, kanamycin, and streptomycin. Among them, KS16 was found to be a synergistic compound with gentamicin and kanamycin. Furthermore, the cellular level of autolysin protein was increased from the KS16-treated Staphylococcus aureus cells. Finally, in vitro CCK-8 assays showed that KS16 exhibited no cytotoxicity at the minimum inhibitory concentrations used for killing Staphylococcus species. From all our results, novel oxindole compounds directly have lethal action or boost existing antibiotic power with the reduction of doses and toxicity in the treatment of multidrug-resistant Staphylococcus species.


Subject(s)
Drug Design , Oxindoles/chemistry , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Ciprofloxacin/pharmacology , Drug Discovery , Drug Resistance, Multiple/drug effects , Gentamicins/pharmacology , Humans , Kanamycin/pharmacology , Molecular Structure , Oxindoles/chemical synthesis , Oxindoles/pharmacology , Species Specificity , Staphylococcal Infections/microbiology , Staphylococcus aureus/chemistry , Staphylococcus aureus/pathogenicity , Staphylococcus epidermidis/chemistry , Staphylococcus epidermidis/pathogenicity , Structure-Activity Relationship
14.
Stem Cells Int ; 2019: 1569740, 2019.
Article in English | MEDLINE | ID: mdl-31428157

ABSTRACT

Protein kinases modulate the reversible postmodifications of substrate proteins to their phosphorylated forms as an essential process in regulating intracellular signaling transduction cascades. Moreover, phosphorylation has recently been shown to tightly control the regulatory network of kinases responsible for the induction and maintenance of pluripotency, defined as the particular ability to differentiate pluripotent stem cells (PSCs) into every cell type in the adult body. In particular, emerging evidence indicates that the balance between the self-renewal and differentiation of PSCs is regulated by the small molecules that modulate kinase signaling pathways. Furthermore, new reprogramming technologies have been developed using kinase modulators, which have provided novel insight of the mechanisms underlying the kinase regulatory networks involved in the generation of induced pluripotent stem cells (iPSCs). In this review, we highlight the recent progress made in defining the roles of protein kinase signaling pathways and their small molecule modulators in regulating the pluripotent states, self-renewal, reprogramming process, and lineage differentiation of PSCs.

15.
FEBS J ; 286(22): 4443-4472, 2019 11.
Article in English | MEDLINE | ID: mdl-31155838

ABSTRACT

Certain bone and soft tissue (BST) tumours harbour a chromosomal translocation [t(6;22)(p21;q12)], which fuses the Ewing's sarcoma (EWS) gene at 22q12 with the octamer-binding transcription factor 4 (Oct-4) gene at 6p21, resulting in the chimeric EWS-Oct-4 protein that possesses high transactivation ability. Although abnormal activation of signalling pathways can lead to human cancer development, the pathways underlying these processes in human BST tumours remain poorly explored. Here, we investigated the functional significance of fibroblast growth factor (FGF) signalling in human BST tumours. To identify the gene(s) involved in the FGF signalling pathway and potentially regulated by EWS-Oct-4 (also called EWS-POU5F1), we performed RNA-Seq analysis, electrophoretic mobility shift assays, chromatin immunoprecipitation assays, and xenograft assays. Treating GBS6 or ZHBTc4 cells-expressing EWS-Oct-4 with the small molecule FGF receptor (FGFR) inhibitors PD173074, NVPBGJ398, ponatinib, and dovitinib suppressed cellular proliferation. Gene expression analysis revealed that, among 22 Fgf and four Fgfr family members, Fgf-4 showed the highest upregulation (by 145-fold) in ZHBTc4 cells-expressing EWS-Oct-4. Computer-assisted analysis identified a putative EWS-Oct-4-binding site at +3017/+3024, suggesting that EWS-Oct-4 regulates Fgf-4 expression in human BST tumours. Fgf-4 enhancer constructs showed that EWS-Oct-4 transactivated the Fgf-4 gene reporter in vitro, and that overexpression of EWS-Oct-4 stimulated endogenous Fgf-4 gene expression in vivo. Finally, PD173074 significantly decreased tumour volume in mice. Taken together, these data suggest that FGF-4 signalling is involved in EWS-Oct-4-mediated tumorigenesis, and that its inhibition impairs tumour growth in vivo significantly.


Subject(s)
Carcinogenesis/metabolism , Cell Proliferation , Fibroblast Growth Factor 4/metabolism , Octamer Transcription Factor-3/genetics , Oncogene Proteins, Fusion/metabolism , Signal Transduction , Soft Tissue Neoplasms/metabolism , Animals , Benzimidazoles/pharmacology , Binding Sites , Carcinogenesis/genetics , Cell Line, Tumor , Fibroblast Growth Factor 4/genetics , Humans , Imidazoles/pharmacology , Mice , Octamer Transcription Factor-3/metabolism , Oncogene Proteins, Fusion/chemistry , Oncogene Proteins, Fusion/genetics , Protein Binding , Pyridazines/pharmacology , Pyrimidines/pharmacology , Quinolones/pharmacology , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Soft Tissue Neoplasms/genetics
16.
Int J Mol Sci ; 20(6)2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30871268

ABSTRACT

Many elderly people suffer from hematological diseases known to be highly age-dependent. Hematopoietic stem cells (HSCs) maintain the immune system by producing all blood cells throughout the lifetime of an organism. Recent reports have suggested that HSCs are susceptible to age-related stress and gradually lose their self-renewal and regeneration capacity with aging. HSC aging is driven by cell-intrinsic and -extrinsic factors that result in the disruption of the immune system. Thus, the study of HSC aging is important to our understanding of age-related immune diseases and can also provide potential strategies to improve quality of life in the elderly. In this review, we delineate our understanding of the phenotypes, causes, and molecular mechanisms involved in HSC aging.


Subject(s)
Aging/pathology , Hematopoietic Stem Cells/pathology , Animals , Hematologic Diseases/pathology , Humans , Immune System/pathology , Phenotype , Quality of Life , Regeneration/physiology
17.
Angiogenesis ; 22(2): 281-293, 2019 05.
Article in English | MEDLINE | ID: mdl-30471052

ABSTRACT

Testis-specific protein, Y-encoded like (TSPYL) family proteins (TSPYL1-6), which are members of the nucleosome assembly protein superfamily, have been determined to be involved in the regulation of various cellular functions. However, the potential role of TSPYL family proteins in endothelial cells (ECs) has not been determined. Here, we demonstrated that the expression of TSPYL5 is highly enriched in human ECs such as human umbilical vein endothelial cells (HUVECs) and human pluripotent stem cell-differentiated ECs (hPSC-ECs). Importantly, TSPYL5 overexpression was shown to promote EC proliferation and functions, such as migration and tube formation, by downregulating p53 expression. Adriamycin-induced senescence was markedly blocked by TSPYL5 overexpression. In addition, the TSPYL5 depletion-mediated loss of EC functions was blocked by p53 inhibition. Significantly, TSPYL5 overexpression promoted angiogenesis in Matrigel plug and wound repair in a mouse skin wound healing model in vivo. Our results suggest that TSPYL5, a novel angiogenic regulator, plays a key role in maintaining endothelial integrity and function. These findings extend the understanding of TSPYL5-dependent mechanisms underlying the regulation of p53-related functions in ECs.


Subject(s)
Human Umbilical Vein Endothelial Cells/physiology , Neovascularization, Physiologic/genetics , Nuclear Proteins/physiology , Tumor Suppressor Protein p53/physiology , Animals , Cell Movement/genetics , Cell Proliferation/genetics , Cells, Cultured , Down-Regulation , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, Transgenic , Tumor Suppressor Protein p53/metabolism
18.
J Clin Med ; 7(11)2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30463279

ABSTRACT

Small molecules that improve reprogramming, stem cell properties, and regeneration can be widely applied in regenerative medicine. Natural plant extracts represent an abundant and valuable source of bioactive small molecules for drug discovery. Natural products themselves or direct derivatives of them have continued to provide small molecules that have entered clinical trials, such as anticancer and antimicrobial drugs. Here, we tested 3695 extracts from native plants to examine whether they can improve induced pluripotent stem cell (iPSC) generation using genetically homogeneous secondary mouse embryonic fibroblasts (MEFs) harboring doxycycline (dox)-inducible reprograming transgenes. Among the tested extracts, extracts from the fruit and stem of Camellia japonica (CJ) enhanced mouse and human iPSC generation and promoted efficient wound healing in an in vivo mouse wound model. CJ is one of the best-known species of the genus Camellia that belongs to the Theaceae family. Our findings identified the natural plant extracts from the fruit and stem of CJ as novel regulators capable of enhancing cellular reprogramming and wound healing, providing a useful supplement in the development of a more efficient and safer method to produce clinical-grade iPSCs and therapeutics.

19.
J Clin Med ; 7(12)2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30486372

ABSTRACT

The pharmaceutical compounds that modulate pluripotent stem cell (PSC) identity and function are increasingly adopted to generate qualified PSCs and their derivatives, which have promising potential in regenerative medicine, in pursuit of more accuracy and safety and less cost. Here, we demonstrate the peroxisome proliferator-activated receptor α (PPARα) agonist as a novel enhancer of pluripotency acquisition and induced pluripotent stem cell (iPSC) generation. We found that PPARα agonist, examined and selected Food and Drug Administration (FDA) -approved compound libraries, increase the expression of pluripotency-associated genes, such as Nanog, Nr5A2, Oct4, and Rex1, during the reprogramming process and facilitate iPSC generation by enhancing their reprogramming efficiency. A reprogramming-promoting effect of PPARα occurred via the upregulation of Nanog, which is essential for the induction and maintenance of pluripotency. Through bioinformatic analysis, we identified putative peroxisome proliferator responsive elements (PPREs) located within the promoter region of the Nanog gene. We also determined that PPARα can activate Nanog transcription by specific binding to putative PPREs. Taken together, our findings suggest that PPARα is an important regulator of PSC pluripotency and reprogramming, and PPARα agonists can be used to improve PSC technology and regenerative medicine.

20.
Biochem Biophys Res Commun ; 506(1): 33-40, 2018 11 17.
Article in English | MEDLINE | ID: mdl-30336978

ABSTRACT

Overcoming drug resistance is one of key issues in treating refractory acute myeloid leukemia (AML). The Toll-like receptor 4 (TLR4) signaling pathway is involved in many aspects of biological functions of AML cells, including the regulation of pro-inflammatory cytokine products, myeloid differentiation, and survival of AML cells. Thus, targeting TLR4 of AML patients for therapeutic purposes should be carefully addressed. In this regard, we investigated the possible role of TLR4 as a regulatory factor against fludarabine (FA) cytotoxicity activity. Here, we identified the differential expression of TLR4 and CD14 receptors in AML cell lines and examined their relationship to FA sensitivity. We found that the stimulation of TLR4 with lipopolysaccharide (LPS) in a TLR4-expressing cell line, THP-1, increased cell viability under FA treatment condition and showed that TLR4 stimulation overcame FA sensitivity through the activation of NF-κB, which subsequently upregulated several anti-apoptotic genes. The inhibition of TLR4/NF-κB signaling could partially or completely reverse LPS-induced cell survival under FA treatment conditions. Interestingly, we found that the expression of thioredoxin-interacting protein (TXNIP), a well-known tumor suppressor, was induced by FA treatment; however, it was suppressed by LPS treatment. Furthermore, the expression level of TXNIP was critical for FA-induced cytotoxicity or LPS-induced FA resistance of THP-1 cells. Our data suggest that TXNIP plays an important role in FA-induced cytotoxicity and TLR4/NF-κB-mediated FA resistance of AML cells. Therefore, TXNIP may be a potential therapeutic target for AML treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Carrier Proteins/genetics , Gene Expression Regulation, Leukemic , NF-kappa B/genetics , Toll-Like Receptor 4/genetics , Vidarabine/analogs & derivatives , Apoptosis/drug effects , Carrier Proteins/immunology , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm/genetics , HL-60 Cells , Humans , Lipopolysaccharide Receptors/genetics , Lipopolysaccharide Receptors/immunology , Lipopolysaccharides/pharmacology , NF-kappa B/immunology , Signal Transduction , THP-1 Cells , Toll-Like Receptor 4/immunology , Vidarabine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL