Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Synth Biol ; 11(10): 3296-3304, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36150110

ABSTRACT

Cascade reaction systems, such as protein fusion and synthetic protein scaffold systems, can both spatially control the metabolic flux and boost the productivity of multistep enzymatic reactions. Despite many efforts to generate fusion proteins, this task remains challenging due to the limited expression of complex enzymes. Therefore, we developed a novel fusion system that bypasses the limited expression of complex enzymes via a post-translational linkage. Here, we report a split intein-mediated cascade system wherein orthogonal split inteins serve as adapters for protein ligation. A genetically programmable, self-assembled, and traceless split intein was utilized to generate a biocatalytic cascade to produce the ginsenoside compound K (CK) with various pharmacological activities, including anticarcinogenic, anti-inflammatory, and antidiabetic effects. We used two types of split inteins, consensus atypical (Cat) and Rma DnaB, to form a covalent scaffold with the three enzymes involved in the CK conversion pathway. The multienzymatic complex with a size greater than 240 kDa was successfully assembled in a soluble form and exhibited specific activity toward ginsenoside conversion. Furthermore, our split intein cascade system significantly increased the CK conversion rate and reduced the production time by more than 2-fold. Our multienzymatic cascade system that uses split inteins can be utilized as a platform for regulating multimeric bioconversion pathways and boosting the production of various high-value substances.


Subject(s)
Ginsenosides , Inteins , Inteins/genetics , Protein Splicing , Proteins/metabolism
2.
Diagnostics (Basel) ; 12(4)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35453844

ABSTRACT

Objective: There is limited literature on repetitive postoperative MRI and clinical evaluation after Uniportal Lumbar Endoscopic Unilateral Laminotomy for Bilateral Decompression. Methods: Clinical visual analog scale, Oswestry Disability Index, McNab's criteria evaluation and MRI evaluation of the axial cut spinal canal area of the upper end plate, mid disc and lower end plate were performed for patients who underwent single-level Uniportal Lumbar Endoscopic Unilateral Laminotomy for Bilateral Decompression. From the evaluation of the axial cut MRI, four types of patterns of remodeling were identified: type A: continuous expanded spinal canal, type B: restenosis with delayed expansion, type C: progressive expansion and type D: restenosis. Result: A total of 126 patients with single-level Uniportal Lumbar Endoscopic Unilateral Laminotomy for Bilateral Decompression were recruited with a minimum follow-up of 26 months. Thirty-six type A, fifty type B, thirty type C and ten type D patterns of spinal canal remodeling were observed. All four types of patterns of remodeling had statistically significant improvement in VAS at final follow-up compared to the preoperative state with type A (5.59 ± 1.58), B (5.58 ± 1.71), C (5.58 ± 1.71) and D (5.27 ± 1.68), p < 0.05. ODI was significantly improved at final follow-up with type A (49.19 ± 10.51), B (50.00 ± 11.29), C (45.60 ± 10.58) and D (45.60 ± 10.58), p < 0.05. A significant MRI axial cut increment of the spinal canal area was found at the upper endplate at postoperative day one and one year with type A (39.16 ± 22.73; 28.00 ± 42.57) mm2, B (47.42 ± 18.77; 42.38 ± 19.29) mm2, C (51.45 ± 18.16; 49.49 ± 18.41) mm2 and D (49.10 ± 23.05; 38.18 ± 18.94) mm2, respectively, p < 0.05. Similar significant increment was found at the mid-disc at postoperative day one, 6 months and one year with type A (55.16 ± 27.51; 37.23 ± 25.88; 44.86 ± 25.73) mm2, B (72.83 ± 23.87; 49.79 ± 21.93; 62.94 ± 24.43) mm2, C (66.85 ± 34.48; 54.92 ± 30.70; 64.33 ± 31.82) mm2 and D (71.65 ± 16.87; 41.55 ± 12.92; 49.83 ± 13.31) mm2 and the lower endplate at postoperative day one and one year with type A (49.89 ± 34.50; 41.04 ± 28.56) mm2, B (63.63 ± 23.70; 54.72 ± 24.29) mm2, C (58.50 ± 24.27; 55.32 ± 22.49) mm2 and D (81.43 ± 16.81; 58.40 ± 18.05) mm2 at postoperative day one and one year, respectively, p < 0.05. Conclusions: After full endoscopic lumbar decompression, despite achieving sufficient decompression immediately postoperatively, varying severity of asymptomatic restenosis was found in postoperative six months MRI without clinical significance. Further remodeling with a varying degree of increment of the spinal canal area occurs at postoperative one year with overall good clinical outcomes.

3.
Int J Mol Sci ; 22(21)2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34769267

ABSTRACT

Protopanaxadiol (PPD), an aglycon found in several dammarene-type ginsenosides, has high potency as a pharmaceutical. Nevertheless, application of these ginsenosides has been limited because of the high production cost due to the rare content of PPD in Panax ginseng and a long cultivation time (4-6 years). For the biological mass production of the PPD, de novo biosynthetic pathways for PPD were introduced in Saccharomyces cerevisiae and the metabolic flux toward the target molecule was restructured to avoid competition for carbon sources between native metabolic pathways and de novo biosynthetic pathways producing PPD in S. cerevisiae. Here, we report a CRISPRi (clustered regularly interspaced short palindromic repeats interference)-based customized metabolic flux system which downregulates the lanosterol (a competing metabolite of dammarenediol-II (DD-II)) synthase in S. cerevisiae. With the CRISPRi-mediated suppression of lanosterol synthase and diversion of lanosterol to DD-II and PPD in S. cerevisiae, we increased PPD production 14.4-fold in shake-flask fermentation and 5.7-fold in a long-term batch-fed fermentation.


Subject(s)
CRISPR-Cas Systems , Metabolic Engineering , Metabolic Networks and Pathways , Saccharomyces cerevisiae , Sapogenins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
4.
J Am Chem Soc ; 143(35): 14115-14124, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34374290

ABSTRACT

Breast cancer consists of heterogenic subpopulations, which determine the prognosis and response to chemotherapy. Among these subpopulations, a very limited number of cancer cells are particularly problematic. These cells, known as breast cancer stem cells (BCSCs), are thought responsible for metastasis and recurrence. They are thus major contributor to the unfavorable outcomes seen for many breast cancer patients. BCSCs are more prevalent in the hypoxic niche. This is an oxygen-deprived environment that is considered crucial to their proliferation, stemness, and self-renewal but also one that makes BCSCs highly refractory to traditional chemotherapeutic regimens. Here we report a small molecule construct, AzCDF, that allows the therapeutic targeting of BCSCs and which is effective in normally refractory hypoxic tumor environments. A related system, AzNap, has been developed that permits CSC imaging. Several design elements are incorporated into AzCDF, including the CAIX inhibitor acetazolamide (Az) to promote localization in MDA-MB-231 CSCs, a dimethylnitrothiophene subunit as a hypoxia trigger, and a 3,4-difluorobenzylidene curcumin (CDF) as a readily released therapeutic payload. This allows AzCDF to serve as a hypoxia-liable molecular platform that targets BCSCs selectively which decreases CSC migration, retards tumor growth, and lowers tumorigenesis rates as evidenced by a combination of in vitro and in vivo studies. To the best of our knowledge, this is the first time a CSC-targeting small molecule has been shown to prevent tumorigenesis in an animal model.


Subject(s)
Antineoplastic Agents/therapeutic use , Carbonic Anhydrase Inhibitors/therapeutic use , Carcinogenesis/drug effects , Cell Hypoxia/drug effects , Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Acetazolamide/analogs & derivatives , Acetazolamide/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Cell Line, Tumor , Cell Movement/drug effects , Curcumin/analogs & derivatives , Curcumin/chemical synthesis , Curcumin/therapeutic use , Diarylheptanoids/chemical synthesis , Diarylheptanoids/therapeutic use , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/therapeutic use , Humans , Mice, Inbred BALB C , Mice, Nude , Neoplasms/diagnostic imaging , Spheroids, Cellular/drug effects , Thiophenes/chemical synthesis , Thiophenes/therapeutic use , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...