Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 11(5)2020 May 06.
Article in English | MEDLINE | ID: mdl-32384825

ABSTRACT

Based on their high clinical potential, the isolation and enrichment of rare circulating tumor cells (CTCs) from peripheral blood cells has been widely investigated. There have been technical challenges with CTC separation methods using solely cancer-specific surface molecules or just using physical properties of CTCs, as they may suffer from heterogeneity or lack of specificity from overlapping physical characteristics with leukocytes. Here, we integrated an immunomagnetic-based negative enrichment method that utilizes magnetic beads attached to leukocyte-specific surface antigens, with a physical separation method that utilizes the distinct size and deformability of CTCs. By manipulating the pressure distribution throughout the device and balancing the drag and magnetic forces acting on the magnetically labeled white blood cells (WBCs), the sequential physical and magnetophoretic separations were optimized to isolate intact cancer cells, regardless of heterogeneity from whole blood. Using a breast cancer cell line in whole blood, we achieved 100% separation efficiency for cancer cells and an average of 97.2% for WBCs, which resulted in a 93.3% average separation purity. The experimental results demonstrated that our microfluidic device can be a promising candidate for liquid biopsy and can be a vital tool for aiding future cancer research.

2.
Micromachines (Basel) ; 10(10)2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31557853

ABSTRACT

In this article, we report on a biomimetic tactile sensor that has a surface kinetic interface (SKIN) that imitates human epidermal fingerprint ridges and the epidermis. The SKIN is composed of a bilayer polymer structure with different elastic moduli. We improved the tactile sensitivity of the SKIN by using a hard epidermal fingerprint ridge and a soft epidermal board. We also evaluated the effectiveness of the SKIN layer in shear transfer characteristics while varying the elasticity and geometrical factors of the epidermal fingerprint ridges and the epidermal board. The biomimetic tactile sensor with the SKIN layer showed a detection capability for surface structures under 100 µm with only 20-µm height differences. Our sensor could distinguish various textures that can be easily accessed in everyday life, demonstrating that the sensor may be used for texture recognition in future artificial and robotic fingers.

3.
Nanotechnology ; 30(40): 405203, 2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31284280

ABSTRACT

We investigated the performance improvement of tin disulfide channel transistors by graphene contact configurations. From its two-dimensional nature, graphene can make electric contacts only at the outermost layers of the channel. For intralayer current flow, two graphene flakes are contacted at the channel's top or bottom layer. For interlayer current flow, one flake is contacted at the top and bottom of each layer. We compared the transistor performance in terms of current magnitude, mobility, and subthreshold swing between the configurations. From such observations, we deduced that device characteristics depend on resistivity or doping level of individual graphene flakes. We also found that interlayer flow excels in the on-current magnitude and the mobility, and that top-contact configuration excels in the subthreshold swing.

4.
Sensors (Basel) ; 19(6)2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30875874

ABSTRACT

In this article, we report on a highly sensitive tactile shear sensor that was able to detect minute levels of shear and surface slip. The sensor consists of a suspended elastomer diaphragm with a top ridge structure, a graphene layer underneath, and a bottom substrate with multiple spatially digitized contact electrodes. When shear is applied to the top ridge structure, it creates torque and deflects the elastomer downwards. Then, the graphene electrode makes contact with the bottom spatially digitized electrodes completing a circuit producing output currents depending on the number of electrodes making contact. The tactile shear sensor was able to detect shear forces as small as 6 µN, detect shear direction, and also distinguish surface friction and roughness differences of shearing objects. We also succeeded in detecting the contact slip motion of a single thread demonstrating possible applications in future robotic fingers and remote surgical tools.

5.
Cancers (Basel) ; 11(2)2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30744156

ABSTRACT

The separation of circulating tumor cells (CTCs) from the peripheral blood is an important issue that has been highlighted because of their high clinical potential. However, techniques that depend solely on tumor-specific surface molecules or just the larger size of CTCs are limited by tumor heterogeneity. Here, we present a slanted weir microfluidic device that utilizes the size and deformability of CTCs to separate them from the unprocessed whole blood. By testing its ability using a highly invasive breast cancer cell line, our device achieved a 97% separation efficiency, while showing an 8-log depletion of erythrocytes and 5.6-log depletion of leukocytes. We also developed an image analysis tool that was able to characterize the various morphologies and differing deformability of the separating cells. From the results, we believe our system possesses a high potential for liquid biopsy, aiding future cancer research.

6.
Micromachines (Basel) ; 9(3)2018 Mar 02.
Article in English | MEDLINE | ID: mdl-30424040

ABSTRACT

Circulating tumor cells (CTCs) are regarded as a strong biomarker which includes clinically valuable information. However, CTCs are very rare and require precise separation and detection for effective clinical applications. Furthermore, downstream analysis has become necessary to identify the distinct sub-population of CTCs that causes metastasis. Here, we report a flow-restricted microfluidic trap array capable of deterministic single-cell capture of CTCs. The extent of flow restriction, correlating with the device geometry, was then optimized using a highly invasive breast cancer cell line (LM2 MDA-MB-231) to achieve 97% capture efficiency with a single-cell capture rate of 99%. Single-cell capture of CTCs from mice with full-blown metastasis was also demonstrated. The single-CTC capturing ability of the flow-restricted trap array not only showed cell enumerating ability but also high prospects for application in future automated downstream analysis.

7.
Sci Rep ; 6: 26531, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27198601

ABSTRACT

In microfluidic filtration systems, one of the leading obstacles to efficient, continuous operation is clogging of the filters. Here, we introduce a lateral flow microfluidic sieving (µ-sieving) technique to overcome clogging and to allow continuous operation of filter based microfluidic separation. A low frequency mechanical oscillation was added to the fluid flow, which made possible the release of aggregated unwanted polystyrene (PS) particles trapped between the larger target PS particles in the filter demonstrating continuous µ-sieving operation. We achieved collection of the target PS particles with 100% separation efficiency. Also, on average, more than 98% of the filtered target particles were retrieved after the filtration showing high retrieval rates. Since the oscillation was applied to the fluid but not to the microfluidic filter system, mechanical stresses to the system was minimized and no additional fabrication procedures were necessary. We also applied the µ-sieving technique to the separation of cancer cells (MDA-MB-231) from whole blood and showed that the fluidic oscillations prevented the filters from being blocked by the filtered cancer cells allowing continuous microfluidic separation with high efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...