Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 4: 4634, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24728015

ABSTRACT

The realization of phase discontinuities across metasurfaces has led to a new class of reflection and refraction. Here we present theory and experiment on the discontinuous propagation of wavepackets across subwavelength-thickness meta-atoms. Using acoustic waves, we observe the process of wavepackets traversing a meta-atom with abrupt displacements, which appear as path discontinuities on a space-time diagram. We construct a tunable meta-atom from two coupled resonators at ~500 Hz, map the spatiotemporal trajectories of individual sonic pulses, and reveal discontinuities at the meta-atom where the pulses exit at a time ~50 ms ahead or behind their arrivals. Applications include thin acoustic metasurface lenses.

2.
Phys Rev Lett ; 110(24): 244302, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-25165929

ABSTRACT

We demonstrate 97%, 89%, and 76% transmission of sound amplitude in air through walls perforated with subwavelength holes of areal coverage fractions 0.10, 0.03, and 0.01, respectively, producing 94-, 950-, and 5700-fold intensity enhancements therein. This remarkable level of extraordinary acoustic transmission is achieved with thin tensioned circular membranes, making the mass of the air in the holes effectively vanish. Imaging the pressure field confirms incident-angle independent transmission, thus realizing a bona fide invisible wall. Applications include high-resolution acoustic sensing.

3.
Eur Phys J E Soft Matter ; 29(3): 345-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19593626

ABSTRACT

High auditory sensitivity, sharp frequency selectivity, and spontaneous otoacoustic emissions are signatures of active amplification of the cochlea. The human ear can also detect very large amplitude sounds without being damaged, as long as the exposed time is not too long. The outer hair cells are believed to be the best candidate for the active force generator of the mammalian cochlea. In this paper, we propose a new model for the basilar membrane oscillation which describes both an active and a protective mechanism by employing an energy depot concept and a critical velocity of the basilar membrane. The compressive response of the basilar membrane at the characteristic frequency and the dynamic response to the stimulation are consistent with the experimental results. Although our model displays a Hopf bifurcation, our braking mechanism results in a hyper-compressive response to intense stimuli which is not generically observed near a Hopf bifurcation. Asymmetry seen in experimental recordings between the onset and the offset of the basilar membrane response to a sound burst is also observed in this model.


Subject(s)
Basilar Membrane/physiology , Models, Biological , Animals , Basilar Membrane/injuries , Biomechanical Phenomena , Hair Cells, Auditory, Outer/metabolism , Kinetics , Noise , Nonlinear Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...