Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Toxicol Environ Health A ; 87(14): 561-578, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38721998

ABSTRACT

Living conditions are an important modifier of individual health outcomes and may lead to higher allostatic load (AL). However, housing-induced cardiovascular and immune effects contributing to altered environmental responsiveness remain understudied. This investigation was conducted to examine the influence of enriched (EH) versus depleted housing (DH) conditions on cardiopulmonary functions, systemic immune responses, and allostatic load in response to a single wildfire smoke (WS) exposure in mice. Male and female C57BL/6J mice were divided into EH or DH for 22 weeks, and cardiopulmonary assessments measured before and after exposures to either one-hr filtered air (FA) or flaming eucalyptus WS exposure. Male and female DH mice exhibited increased heart rate (HR) and left ventricular mass (LVM), as well as reduced stroke volume and end diastolic volume (EDV) one week following exposure to WS. Female DH mice displayed significantly elevated levels of IL-2, IL-17, corticosterone and hemoglobin A1c (HbA1c) following WS, while female in EH mice higher epinephrine levels were detected. Female mice exhibited higher AL than males with DH, which was potentiated post-WS exposure. Thus, DH increased susceptibility to extreme air pollution in a gender-dependent manner suggesting that living conditions need to be evaluated as a modifier of toxicological responses.


Subject(s)
Housing, Animal , Mice, Inbred C57BL , Smoke , Wildfires , Animals , Female , Male , Mice , Smoke/adverse effects , Allostasis , Air Pollutants , Sex Factors , Heart Rate
2.
Inhal Toxicol ; : 1-12, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776456

ABSTRACT

Objectives: Living conditions play a major role in health and well-being, particularly for the cardiovascular and pulmonary systems. Depleted housing contributes to impairment and development of disease, but how it impacts body resiliency during exposure to environmental stressors is unknown. This study examined the effect of depleted (DH) versus enriched housing (EH) on cardiopulmonary function and subsequent responses to wildfire smoke. Materials and Methods: Two cohorts of healthy female mice, one of them surgically implanted with radiotelemeters for the measurement of electrocardiogram, body temperature (Tco) and activity, were housed in either DH or EH for 7 weeks. Telemetered mice were exposed for 1 h to filtered air (FA) and then flaming eucalyptus wildfire smoke (WS) while untelemetered mice, which were used for ventilatory assessment and tissue collection, were exposed to either FA or WS. Animals were continuously monitored for 5-7 days after exposure. Results: EH prevented a decrease in Tco after radiotelemetry surgery. EH mice also had significantly higher activity levels and lower heart rate during and after FA and WS. Moreover, EH caused a decreased number of cardiac arrhythmias during WS. WS caused ventilatory depression in DH mice but not EH mice. Housing enrichment also upregulated the expression of cardioprotective genes in the heart. Conclusions: The results of this study indicate that housing conditions impact overall health and cardiopulmonary function. More importantly, depleted housing appears to worsen the response to air pollution. Thus, non-chemical factors should be considered when assessing the susceptibility of populations, especially when it comes to extreme environmental events.

3.
Res Sq ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38659910

ABSTRACT

Although it is well established that wildfire smoke exposure can increase cardiovascular morbidity and mortality, the combined effects of non-chemical stressors and wildfire smoke remains understudied. Housing is a non-chemical stressor that is a major determinant of cardiovascular health, however, disparities in neighborhood and social status have exacerbated the cardiovascular health gaps within the United States. Further, pre-existing cardiovascular morbidities, such as atherosclerosis, can worsen the response to wildfire smoke exposures. This represents a potentially hazardous interaction between inadequate housing and stress, cardiovascular morbidities, and worsened responses to wildfire smoke exposures. The purpose of this study was to examine the effects of enriched (EH) versus depleted (DH) housing on pulmonary and cardiovascular responses to a single flaming eucalyptus wildfire smoke (WS) exposure in male and female apolipoprotein E (ApoE) knockout mice, which develop an atherosclerosis-like phenotype. The results of this study show that cardiopulmonary responses to WS exposure occur in a sex-specific manner. EH blunts adverse WS-induced ventilatory responses, specifically an increase in tidal volume (TV), expiratory time (Te), and relaxation time (RT) after a WS exposure, but only in females. EH also blunted a WS-induced increase in isovolumic relaxation time (IVRT) and the myocardial performance index (MPI) 1-wk after exposures, also only in females. Our results suggest that housing alters the cardiovascular response to a single WS exposure, and that DH might cause increased susceptibility to environmental exposures that manifest in altered ventilation patterns and diastolic dysfunction in a sex-specific manner.

SELECTION OF CITATIONS
SEARCH DETAIL
...