Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(22): 28645-28654, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38787734

ABSTRACT

The chemical stability and energy density of redox couples are crucial factors in enhancing the durability and cost competitiveness of aqueous flow batteries. This study proposed integrating functional groups to viologen anolyte to increase its solubility and, consequently, energy density and stability for prolonged performance. Specifically, sulfonate and ester groups were selectively incorporated at the nitrogen sites of viologen to enhance solubility, leveraging their asymmetry and double hydrophilicity. Furthermore, an alpha-methyl group was introduced between the bipyridine and ester groups to enhance the chemical stability by preventing stacking and dimerization that can lead to irreversible degradation. The modified viologen demonstrated a remarkable solubility of 3.0 M in deionized water, corresponding to a volumetric capacity of 80.404 Ah L-1. Additionally, the designed viologen exhibits outstanding retention of 92.4% after 200 cycles with a minimal capacity fading rate of 0.055% per cycle in a 0.1 M flow cell test.

2.
Phys Chem Chem Phys ; 18(36): 24841-24844, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27711461

ABSTRACT

Na-SO2 batteries are promising power sources for energy storage systems. However, it is unclear what happens on the cathode surface at the molecular level during the discharge process. Here, we provide the working mechanism of Na-SO2 batteries through a combination of nuclear magnetic resonance (NMR) spectroscopy and first-principles NMR calculations.

3.
Sci Rep ; 5: 12827, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26243052

ABSTRACT

Sodium rechargeable batteries can be excellent alternatives to replace lithium rechargeable ones because of the high abundance and low cost of sodium; however, there is a need to further improve the battery performance, cost-effectiveness, and safety for practical use. Here we demonstrate a new type of room-temperature and high-energy density sodium rechargeable battery using an SO2-based inorganic molten complex catholyte, which showed a discharge capacity of 153 mAh g(-1) based on the mass of catholyte and carbon electrode with an operating voltage of 3 V, good rate capability and excellent cycle performance over 300 cycles. In particular, non-flammability and intrinsic self-regeneration mechanism of the inorganic liquid electrolyte presented here can accelerate the realization of commercialized Na rechargeable battery system with outstanding reliability. Given that high performance and unique properties of Na-SO2 rechargeable battery, it can be another promising candidate for next generation energy storage system.

SELECTION OF CITATIONS
SEARCH DETAIL
...