Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Plant Cell ; 36(3): 746-763, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38041863

ABSTRACT

N 6-methyladenosine (m6A) is a common epitranscriptional mRNA modification in eukaryotes. Thirteen putative m6A readers, mostly annotated as EVOLUTIONARILY CONSERVED C-TERMINAL REGION (ECT) proteins, have been identified in Arabidopsis (Arabidopsis thaliana), but few have been characterized. Here, we show that the Arabidopsis m6A reader ECT1 modulates salicylic acid (SA)-mediated plant stress responses. ECT1 undergoes liquid-liquid phase separation in vitro, and its N-terminal prion-like domain is critical for forming in vivo cytosolic biomolecular condensates in response to SA or bacterial pathogens. Fluorescence-activated particle sorting coupled with quantitative PCR analyses unveiled that ECT1 sequesters SA-induced m6A modification-prone mRNAs through its conserved aromatic cage to facilitate their decay in cytosolic condensates, thereby dampening SA-mediated stress responses. Consistent with this finding, ECT1 overexpression promotes bacterial multiplication in plants. Collectively, our findings unequivocally link ECT1-associated cytosolic condensates to SA-dependent plant stress responses, advancing the current understanding of m6A readers and the SA signaling network.


Subject(s)
Adenine/analogs & derivatives , Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Salicylic Acid/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant
2.
Plant Physiol ; 192(4): 3120-3133, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37096689

ABSTRACT

Chloroplast-to-nucleus retrograde signaling (RS) pathways are critical in modulating plant development and stress adaptation. Among chloroplast proteins mediating RS pathways, GENOMES UNCOUPLED1 (GUN1) represses the transcription of the nuclear transcription factors GOLDEN2-LIKE1 (GLK1) and GLK2 that positively regulate chloroplast biogenesis. Given the extensive exploration of the function of GUN1 in biogenic RS carried out in previous years, our understanding of its role in plant stress responses remains scarce. Here, we revealed that GUN1 contributes to the expression of salicylic acid (SA)-responsive genes (SARGs) through transcriptional repression of GLK1/2 in Arabidopsis (Arabidopsis thaliana). Loss of GUN1 significantly compromised the SA responsiveness in plants, concomitant with the upregulation of GLK1/2 transcripts. In contrast, knockout of GLK1/2 potentiated the expression of SARGs and led to enhanced stress responses. Chromatin immunoprecipitation, coupled with quantitative PCR and related reverse genetic approaches, unveiled that in gun1, GLK1/2 might modulate SA-triggered stress responses by stimulating the expression of WRKY18 and WRKY40, transcriptional repressors of SARGs. In summary, we demonstrate that a hierarchical regulatory module, consisting of GUN1-GLK1/2-WRKY18/40, modulates SA signaling, opening a research avenue regarding a latent GUN1 function in plant-environment interactions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Salicylic Acid/metabolism , Arabidopsis/metabolism , Transcription Factors/metabolism , Chloroplasts/metabolism , Gene Expression Regulation, Plant , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
3.
Plant J ; 114(2): 310-324, 2023 04.
Article in English | MEDLINE | ID: mdl-36752655

ABSTRACT

Chloroplast pre-ribosomal RNA (rRNA) undergoes maturation, which is critical for ribosome assembly. While the central and auxiliary factors in rRNA maturation have been elucidated in bacteria, their mode of action remains largely unexplored in chloroplasts. We now reveal chloroplast-specific factors involved in 16S rRNA maturation, Arabidopsis thaliana orthologs of bacterial RsmD methyltransferase (AtRsmD) and ribosome maturation factor RimM (AtRimM). A forward genetic screen aimed to find suppressors of the Arabidopsis yellow variegated 2 (var2) mutant defective in photosystem II quality control found a causal nonsense mutation in AtRsmD. The substantially impaired 16S rRNA maturation and translation due to the mutation rescued the leaf variegation phenotype by lowering the levels of chloroplast-encoded proteins, including photosystem II core proteins, in var2. The subsequent co-immunoprecipitation coupled with mass spectrometry analyses and bimolecular fluorescence complementation assay found that AtRsmD interacts with AtRimM. Consistent with their interaction, loss of AtRimM also considerably impairs 16S rRNA maturation with decelerated m2 G915 modification in 16S rRNA catalyzed by AtRsmD. The atrimM mutation also rescued var2 mutant phenotypes, corroborating the functional interplay between AtRsmD and AtRimM towards modification and maturation of 16S rRNA and chloroplast proteostasis. The maturation and post-transcriptional modifications of rRNA are critical to assembling ribosomes responsible for protein translation. Here, we revealed that the cooperative regulation of 16S rRNA m2 G915 modifications by AtRsmD methyltransferase and ribosome assembly factor AtRimM contributes to 16S rRNA maturation, ribosome assembly, and proteostasis in chloroplasts.


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Arabidopsis Proteins/metabolism , Photosystem II Protein Complex/metabolism , Plastids/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Mutation , Methyltransferases/genetics , Methyltransferases/metabolism
4.
Plant Physiol ; 188(4): 2308-2324, 2022 03 28.
Article in English | MEDLINE | ID: mdl-34951648

ABSTRACT

GOLDEN2-LIKE (GLK) transcription factors drive the expression of photosynthesis-associated nuclear genes (PhANGs) indispensable for chloroplast biogenesis. Salicylic acid (SA)-induced SIGMA FACTOR-BINDING PROTEIN 1 (SIB1), a transcription coregulator and positive regulator of cell death, interacts with GLK1 and GLK2 to reinforce the expression of PhANGs, leading to photoinhibition of photosystem II and singlet oxygen (1O2) burst in chloroplasts. 1O2 then contributes to SA-induced cell death via EXECUTER 1 (EX1; 1O2 sensor protein)-mediated retrograde signaling upon reaching a critical level. This earlier finding has initiated research on the potential role of GLK1/2 and EX1 in SA signaling. Consistent with this view, we reveal that LESION-SIMULATING DISEASE 1 (LSD1), a transcription coregulator and negative regulator of SA-primed cell death, interacts with GLK1/2 to repress their activities in Arabidopsis (Arabidopsis thaliana). Overexpression of LSD1 repressed GLK target genes, including PhANGs, whereas loss of LSD1 enhanced their expression. Remarkably, LSD1 overexpression inhibited chloroplast biogenesis, resembling the characteristic glk1glk2 double mutant phenotype. Subsequent chromatin immunoprecipitation coupled with expression analyses further revealed that LSD1 inhibits the DNA-binding activity of GLK1 toward its target promoters. SA-induced nuclear-targeted SIB1 proteins appeared to interrupt the LSD1-GLK interaction, and the subsequent SIB1-GLK interaction activated EX1-mediated 1O2 signaling, elucidating antagonistic modules SIB1 and LSD1 in the regulation of GLK activity. Taken together, we provide a working model that SIB1 and LSD1, mutually exclusive SA-signaling components, antagonistically regulate GLK1/2 to fine-tune the expression of PhANGs, thereby modulating 1O2 homeostasis and related stress responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Photosynthesis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , DNA-Binding Proteins , Gene Expression Regulation, Plant , Photosynthesis/genetics , Sigma Factor , Transcription Factors/metabolism
6.
Plant J ; 104(4): 964-978, 2020 11.
Article in English | MEDLINE | ID: mdl-32860438

ABSTRACT

The photosynthetic bacterial phycobiliprotein lyases, also called CpcT lyases, catalyze the biogenesis of phycobilisome, a light-harvesting antenna complex, through the covalent attachment of chromophores to the antenna proteins. The Arabidopsis CRUMPLED LEAF (CRL) protein is a homolog of the cyanobacterial CpcT lyase. Loss of CRL leads to multiple lesions, including localized foliar cell death, constitutive expression of stress-related nuclear genes, abnormal cell cycle, and impaired plastid division. Notwithstanding the apparent phenotypes, the function of CRL still remains elusive. To gain insight into the function of CRL, we examined whether CRL still retains the capacity to bind with the bacterial chromophore phycocyanobilin (PCB) and its plant analog phytochromobilin (PΦB). The revealed structure of the CpcT domain of CRL is comparable to that of the CpcT lyase, despite the low sequence identity. The subsequent in vitro biochemical assays found, as shown for the CpcT lyase, that PCB/PΦB binds to the CRL dimer. However, some mutant forms of CRL, substantially compromised in their bilin-binding ability, still restore the crl-induced multiple lesions. These results suggest that although CRL retains the bilin-binding pocket, it seems not functionally associated with the crl-induced multiple lesions.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Cyanobacteria/enzymology , Arabidopsis/enzymology , Arabidopsis Proteins/genetics , Bile Pigments/metabolism , Cell Division , Lyases/genetics , Mutation , Phenotype , Phycobilins/metabolism , Phycobiliproteins/metabolism , Phycobilisomes/metabolism , Phycocyanin/metabolism , Plastids/metabolism , Protein Binding
7.
Plant Cell ; 32(7): 2237-2250, 2020 07.
Article in English | MEDLINE | ID: mdl-32409317

ABSTRACT

The plant stress hormone salicylic acid (SA) participates in local and systemic acquired resistance, which eventually leads to whole-plant resistance to bacterial pathogens. However, if SA-mediated signaling is not appropriately controlled, plants incur defense-associated fitness costs such as growth inhibition and cell death. Despite its importance, to date only a few components counteracting the SA-primed stress responses have been identified in Arabidopsis (Arabidopsis thaliana). These include other plant hormones such as jasmonic acid and abscisic acid, and proteins such as LESION SIMULATING DISEASE1, a transcription coregulator. Here, we describe PLANT NATRIURETIC PEPTIDE A (PNP-A), a functional analog to vertebrate atrial natriuretic peptides, that appears to antagonize the SA-mediated plant stress responses. While loss of PNP-A potentiates SA-mediated signaling, exogenous application of synthetic PNP-A or overexpression of PNP-A significantly compromises the SA-primed immune responses. Moreover, we identify a plasma membrane-localized receptor-like protein, PNP-R2, that interacts with PNP-A and is required to initiate the PNP-A-mediated intracellular signaling. In summary, our work identifies a peptide and its putative cognate receptor as counteracting both SA-mediated signaling and SA-primed cell death in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Salicylic Acid/metabolism , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Cell Death/drug effects , Cell Membrane/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Cells/metabolism , Plants, Genetically Modified , Salicylic Acid/pharmacology , Stress, Physiological , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Plant Physiol ; 183(1): 358-370, 2020 05.
Article in English | MEDLINE | ID: mdl-32139475

ABSTRACT

N-terminal (Nt) acetylation (NTA) is an ample and irreversible cotranslational protein modification catalyzed by ribosome-associated Nt-acetyltransferases. NTA on specific proteins can act as a degradation signal (called an Ac/N-degron) for proteolysis in yeast and mammals. However, in plants, the biological relevance of NTA remains largely unexplored. In this study, we reveal that Arabidopsis (Arabidopsis thaliana) SIGMA FACTOR-BINDING PROTEIN1 (SIB1), a transcription coregulator and a positive regulator of salicylic acid-primed cell death, undergoes an absolute NTA on the initiator Met; Nt-acetyltransferase B (NatB) partly contributes to this modification. While NTA results in destabilization of certain target proteins, our genetic and biochemical analyses revealed that plant NatB-involved NTA instead renders SIB1 more stable. Given that the ubiquitin/proteasome system stimulates SIB1 degradation, it seems that the NTA-conferred stability ensures the timely expression of SIB1-dependent genes, mostly related to immune responses. Taking our findings together, here we report a noncanonical NTA-driven protein stabilization in land plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , N-Terminal Acetyltransferase B/metabolism , Salicylic Acid/pharmacology , Sigma Factor/metabolism , Acetylation , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Death/drug effects , Cell Death/genetics , N-Terminal Acetyltransferase B/genetics , Sigma Factor/genetics
9.
Plant Physiol ; 180(4): 2182-2197, 2019 08.
Article in English | MEDLINE | ID: mdl-31160506

ABSTRACT

Photodamage of the PSII reaction center (RC) is an inevitable process in an oxygen-rich environment. The damaged PSII RC proteins (Dam-PSII) undergo degradation via the thylakoid membrane-bound FtsH metalloprotease, followed by posttranslational assembly of PSII. While the effect of Dam-PSII on gene regulation is described for cyanobacteria, its role in land plants is largely unknown. In this study, we reveal an intriguing retrograde signaling pathway by using the Arabidopsis (Arabidopsis thaliana) yellow variegated2-9 mutant, which expresses a mutated FtsH2 (FtsH2G267D) metalloprotease, specifically impairing its substrate-unfolding activity. This lesion leads to the perturbation of PSII protein homeostasis (proteostasis) and the accumulation of Dam-PSII. Subsequently, this results in an up-regulation of salicylic acid (SA)-responsive genes, which is abrogated by inactivation of either an SA transporter in the chloroplast envelope membrane or extraplastidic SA signaling components as well as by removal of SA. These results suggest that the stress hormone SA, which is mainly synthesized via the chloroplast isochorismate pathway in response to the impaired PSII proteostasis, mediates the retrograde signaling. These findings reinforce the emerging view of chloroplast function toward plant stress responses and suggest SA as a potential plastid factor mediating retrograde signaling.


Subject(s)
Arabidopsis/metabolism , Photosystem II Protein Complex/metabolism , Salicylic Acid/metabolism , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Mutation , Proteostasis/genetics , Proteostasis/physiology , Signal Transduction
10.
J Exp Bot ; 70(12): 3075-3088, 2019 06 28.
Article in English | MEDLINE | ID: mdl-30989223

ABSTRACT

Cellular protein homeostasis (proteostasis) is maintained through the balance between de novo synthesis and proteolysis. The unfolded/misfolded protein response (UPR) that is triggered by stressed endoplasmic reticulum (ER) also plays an important role in proteostasis in both plants and animals. Although ER-triggered UPR has been extensively studied in plants, the molecular mechanisms underlying mitochondrial and chloroplastic UPRs are largely uncharacterized despite the fact that these organelles are sites of production of harmful reactive oxygen species (ROS), which damage proteins. In this study, we demonstrate that chloroplasts of the Arabidopsis yellow leaf variegation 2 (var2) mutant, which lacks the metalloprotease FtsH2, accumulate damaged chloroplast proteins and trigger a UPR-like response, namely the accumulation of a suite of chloroplast proteins involved in protein quality control (PQC). These PQC proteins include heat-shock proteins, chaperones, proteases, and ROS detoxifiers. Given that FtsH2 functions primarily in photosystem II proteostasis, the accumulation of PQC-related proteins may balance the FtsH2 deficiency. Moreover, the apparent up-regulation of the cognate transcripts indicates that the accumulation of PQC-related proteins in var2 is probably mediated by retrograde signaling, indicating the occurrence of a UPR-like response in var2.


Subject(s)
Arabidopsis/metabolism , Photosystem II Protein Complex/metabolism , Proteostasis , Unfolded Protein Response , Arabidopsis/genetics , Chloroplasts , Mutation
11.
Plant Cell ; 31(1): 210-230, 2019 01.
Article in English | MEDLINE | ID: mdl-30606779

ABSTRACT

Chloroplast-to-nucleus retrograde signaling is essential for the coupled expression of photosynthesis-associated nuclear genes (PhANGs) and plastid genes (PhAPGs) to ensure the functional status of chloroplasts (Cp) in plants. Although various signaling components involved in the process have been identified in Arabidopsis (Arabidopsis thaliana), the biological relevance of such coordination remains an enigma. Here, we show that the uncoupled expression of PhANGs and PhAPGs contributes to the cell death in the lesion simulating disease1 (lsd1) mutant of Arabidopsis. A daylength-dependent increase of salicylic acid (SA) appears to rapidly up-regulate a gene encoding SIGMA FACTOR BINDING PROTEIN1 (SIB1), a transcriptional coregulator, in lsd1 before the onset of cell death. The dual targeting of SIB1 to the nucleus and the Cps leads to a simultaneous up-regulation of PhANGs and down-regulation of PhAPGs. Consequently, this disrupts the stoichiometry of photosynthetic proteins, especially in PSII, resulting in the generation of the highly reactive species singlet oxygen (1O2) in Cps. Accordingly, inactivation of the nuclear-encoded Cp protein EXECUTER1, a putative 1O2 sensor, significantly attenuates the lsd1-conferred cell death. Together, these results provide a pathway from the SA- to the 1O2-signaling pathway, which are intertwined via the uncoupled expression of PhANGs and PhAPGs, contributing to the lesion-mimicking cell death in lsd1.


Subject(s)
Arabidopsis/metabolism , Cell Nucleus/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Nucleus/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Photosynthesis/genetics , Photosynthesis/physiology , Salicylic Acid/metabolism , Singlet Oxygen/metabolism
12.
Front Plant Sci ; 8: 1145, 2017.
Article in English | MEDLINE | ID: mdl-28706530

ABSTRACT

Photosystem II reaction center (PSII RC) and light-harvesting complex inevitably generate highly reactive singlet oxygen (1O2) that can impose photo-oxidative damage, especially when the rate of generation exceeds the rate of detoxification. Besides being toxic, 1O2 has also been ascribed to trigger retrograde signaling, which leads to nuclear gene expression changes. Two distinctive molecular components appear to regulate 1O2 signaling: a volatile signaling molecule ß-cyclocitral (ß-CC) generated upon oxidation of ß-carotene by 1O2 in PSII RC assembled in grana core, and a thylakoid membrane-bound FtsH2 metalloprotease that promotes 1O2-triggered signaling through the proteolysis of EXECUTER1 (EX1) proteins associated with PSII in grana margin. The role of FtsH2 protease in 1O2 signaling was established recently in the conditional fluorescent (flu) mutant of Arabidopsis thaliana that generates 1O2 upon dark-to-light shift. The flu mutant lacking functional FtsH2 significantly impairs 1O2-triggered and EX1-mediated cell death. In the present study, the role of FtsH2 in the induction of 1O2 signaling was further clarified by analyzing the FtsH2-dependent nuclear gene expression changes in the flu mutant. Genome-wide transcriptome analysis showed that the inactivation of FtsH2 repressed the majority (85%) of the EX1-dependent 1O2-responsive genes (SORGs), providing direct connection between FtsH2-mediated EX1 degradation and 1O2-triggered gene expression changes. Furthermore, the overlap between ß-CC-induced genes and EX1-FtsH2-dependent genes was very limited, further supporting the coexistence of two distinctive 1O2 signaling pathways.

13.
Nat Commun ; 6: 8113, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26334616

ABSTRACT

Seed germination is a key developmental process that has to be tightly controlled to avoid germination under unfavourable conditions. Abscisic acid (ABA) is an essential repressor of seed germination. In Arabidopsis, it has been shown that the endosperm, a single cell layer surrounding the embryo, synthesizes and continuously releases ABA towards the embryo. The mechanism of ABA transport from the endosperm to the embryo was hitherto unknown. Here we show that four AtABCG transporters act in concert to deliver ABA from the endosperm to the embryo: AtABCG25 and AtABCG31 export ABA from the endosperm, whereas AtABCG30 and AtABCG40 import ABA into the embryo. Thus, this work establishes that radicle extension and subsequent embryonic growth are suppressed by the coordinated activity of multiple ABA transporters expressed in different tissues.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Endosperm/metabolism , Gene Expression Regulation, Plant , Germination/genetics , Seeds/metabolism , ATP Binding Cassette Transporter, Subfamily G , ATP-Binding Cassette Transporters/genetics , Arabidopsis Proteins/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
14.
PLoS Genet ; 10(6): e1004416, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24922306

ABSTRACT

The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Nuclear Proteins/genetics , Photosynthesis/genetics , Transcriptional Activation/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/biosynthesis , Carotenoids/biosynthesis , Chlorophyll/biosynthesis , G-Box Binding Factors/genetics , Gene Expression Regulation, Plant , Photoperiod , Promoter Regions, Genetic , Receptors, Peptide/biosynthesis , Seasons , Temperature , Transcription, Genetic
15.
J Vis Exp ; (81): e50732, 2013 Nov 09.
Article in English | MEDLINE | ID: mdl-24300527

ABSTRACT

The Arabidopsis endosperm consists of a single cell layer surrounding the mature embryo and playing an essential role to prevent the germination of dormant seeds or that of nondormant seeds irradiated by a far red (FR) light pulse. In order to further gain insight into the molecular genetic mechanisms underlying the germination repressive activity exerted by the endosperm, a "seed coat bedding" assay (SCBA) was devised. The SCBA is a dissection procedure physically separating seed coats and embryos from seeds, which allows monitoring the growth of embryos on an underlying layer of seed coats. Remarkably, the SCBA reconstitutes the germination repressive activities of the seed coat in the context of seed dormancy and FR-dependent control of seed germination. Since the SCBA allows the combinatorial use of dormant, nondormant and genetically modified seed coat and embryonic materials, the genetic pathways controlling germination and specifically operating in the endosperm and embryo can be dissected. Here we detail the procedure to assemble a SCBA.


Subject(s)
Arabidopsis/physiology , Botany/methods , Endosperm/physiology , Arabidopsis/genetics , Endosperm/genetics , Germination/genetics , Germination/physiology , Seeds/physiology
16.
Biosci Biotechnol Biochem ; 77(4): 884-7, 2013.
Article in English | MEDLINE | ID: mdl-23563554

ABSTRACT

Despite potential medical, economical, and agronomical importance, the bioprocessing of mistletoe cell cultures, from callus cultures to mass production of high-value products (e.g., lectins and viscotoxins), has been unsuccessful to date. In this study, we confirmed the potential of in vitro lectin production from callus cultures of Korean mistletoe (Viscum album L. var. coloratum).


Subject(s)
Cell Culture Techniques , Plant Lectins/analysis , Plant Lectins/biosynthesis , Viscum/cytology , Viscum/metabolism , Plant Lectins/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
Genes Dev ; 26(17): 1984-96, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22948663

ABSTRACT

Phytochromes phyB and phyA mediate a remarkable developmental switch whereby, early upon seed imbibition, canopy light prevents phyB-dependent germination, whereas later on, it stimulates phyA-dependent germination. Using a seed coat bedding assay where the growth of dissected embryos is monitored under the influence of dissected endosperm, allowing combinatorial use of mutant embryos and endosperm, we show that canopy light specifically inactivates phyB activity in the endosperm to override phyA-dependent signaling in the embryo. This interference involves abscisic acid (ABA) release from the endosperm and distinct spatial activities of phytochrome signaling components. Under the canopy, endospermic ABA opposes phyA signaling through the transcription factor (TF) ABI5, which shares with the TF PIF1 several target genes that negatively regulate germination in the embryo. ABI5 enhances the expression of phytochrome signaling genes PIF1, SOMNUS, GAI, and RGA, but also of ABA and gibberellic acid (GA) metabolic genes. Over time, weaker ABA-dependent responses eventually enable phyA-dependent germination, a distinct type of germination driven solely by embryonic growth.


Subject(s)
Arabidopsis/embryology , Arabidopsis/metabolism , Germination , Phytochrome A/metabolism , Phytochrome B/metabolism , Seeds/embryology , Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Endosperm/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Promoter Regions, Genetic , Seeds/metabolism , Signal Transduction
19.
Plant Cell ; 24(7): 3026-39, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22797473

ABSTRACT

Enhanced levels of singlet oxygen ((1)O(2)) in chloroplasts trigger programmed cell death. The impact of (1)O(2) production in chloroplasts was monitored first in the conditional fluorescent (flu) mutant of Arabidopsis thaliana that accumulates (1)O(2) upon a dark/light shift. The onset of (1)O(2) production is rapidly followed by a loss of chloroplast integrity that precedes the rupture of the central vacuole and the final collapse of the cell. Inactivation of the two plastid proteins EXECUTER (EX1) and EX2 in the flu mutant abrogates these responses, indicating that disintegration of chloroplasts is due to EX-dependent signaling rather than (1)O(2) directly. In flu seedlings, (1)O(2)-mediated cell death signaling operates as a default pathway that results in seedlings committing suicide. By contrast, EX-dependent signaling in the wild type induces the formation of microlesions without decreasing the viability of seedlings. (1)O(2)-mediated and EX-dependent loss of plastid integrity and cell death in these plants occurs only in cells containing fully developed chloroplasts. Our findings support an as yet unreported signaling role of (1)O(2) in the wild type exposed to mild light stress that invokes photoinhibition of photosystem II without causing photooxidative damage of the plant.


Subject(s)
Apoptosis/physiology , Arabidopsis/physiology , Chloroplasts/physiology , Signal Transduction/physiology , Singlet Oxygen/metabolism , Apoptosis/radiation effects , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chloroplast Proteins/genetics , Chloroplast Proteins/metabolism , Chloroplasts/radiation effects , Darkness , Gene Expression Regulation, Plant , Light , Mutation , Oxidative Stress/physiology , Oxidative Stress/radiation effects , Photosystem II Protein Complex/physiology , Photosystem II Protein Complex/radiation effects , Plant Leaves/cytology , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/radiation effects , Seedlings/cytology , Seedlings/genetics , Seedlings/physiology , Seedlings/radiation effects , Signal Transduction/radiation effects , Vacuoles/metabolism , Vacuoles/radiation effects
20.
Proc Natl Acad Sci U S A ; 107(44): 19108-13, 2010 Nov 02.
Article in English | MEDLINE | ID: mdl-20956298

ABSTRACT

Seed dormancy is an ecologically important adaptive trait in plants whereby germination is repressed even under favorable germination conditions such as imbibition with water. In Arabidopsis and most plant species, dormancy absolutely requires an unidentified seed coat germination-repressive activity and constitutively higher abscisic acid (ABA) levels upon seed imbibition. The mechanisms underlying these processes and their possible relationship are incompletely understood. We developed a "seed coat bedding" assay monitoring the growth of dissected embryos cultured on a layer of seed coats, allowing combinatorial experiments using dormant, nondormant, and various genetically modified seed coat and embryonic materials. This assay, combined with direct ABA measurements, revealed that, upon imbibition, dormant coats, unlike nondormant coats, actively produce and release ABA to repress embryo germination, whatever the embryo origin, i.e., from dormant, nondormant, or never dormant aba seeds, unable to synthesize ABA. The persistent high ABA levels in imbibed dormant seeds requires the permanent expression of the DELLA gene RGL2, where it remains insensitive to gibberellins (GA) unlike in nondormant seeds. These findings present the seed coat as an organ actively controlling germination upon seed imbibition and provide a framework to investigate how environmental factors break seed dormancy.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Endosperm/metabolism , Plant Dormancy/physiology , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Endosperm/genetics , Gene Expression Regulation, Plant/physiology , Gibberellins/genetics , Gibberellins/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...