Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Commun Chem ; 6(1): 282, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38123721

ABSTRACT

The direct oxidation of methane to methanol has been spotlighted research for decades, but has never been commercialized. This study introduces cost-effective process for co-producing methanol and sulfuric acid through a direct oxidation of methane. In the initial phase, methane oxidation forms methyl bisulfate (CH3OSO3H), then transformed into methyl trifluoroacetate (CF3CO2CH3) via esterification, and hydrolyzed into methanol. This approach eliminates the need for energy-intensive separation of methyl bisulfate from sulfuric acid by replacing the former with methyl trifluoroacetate. Through the superstructure optimization, our sequential process reduces the levelized cost of methanol to nearly two-fold reduction from the current market price. Importantly, this process demonstrates adaptability to smaller gas fields, assuring its economical operation across a broad range of gas fields. The broader application of this process could substantially mitigate global warming by utilizing methane, leading to a significantly more sustainable and economically beneficial methanol industry.

2.
ACS Appl Mater Interfaces ; 15(22): 27411-27421, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37232172

ABSTRACT

Carbon monoxide (CO) is a key reactant in several Fischer-Tropsch processes, including those used in light olefin and methanol syntheses. However, it is highly toxic and causes serious poisoning of noble metal catalysts. Thus, a solid adsorbent that can selectively capture CO, especially at low concentrations, is required. In this study, zeolite Y-based adsorbents in which Cu(I) ions occupy the supercage cation sites (CuCl/Y) are prepared via solid-state ion exchange. Volumetric adsorption measurements reveal that the Cu(I) ions significantly enhance CO adsorption in the low-pressure range by π-complexation. Furthermore, unexpected molecular sieving behavior, with extremely high CO/CO2 selectivity, is observed when excess CuCl homogeneously covers the zeolite pore structures. Thus, although CO has a larger kinetic diameter, it can penetrate the zeolite supercage while smaller molecules (i.e., Ar and CO2) cannot. Density functional theory calculations reveal that CO molecules can remain adsorbed in pseudoblocked pores by CuCl, thanks to the strong interaction of C 2p and Cu 3d states, resulting in the high CO/CO2 selectivity. One of the prepared adsorbents, CuCl/Y with 50 wt % CuCl, is capable of selectively capturing 3.04 mmol g-1 of CO with a CO/CO2 selectivity of >3370.

3.
Sci Total Environ ; 834: 155262, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35447186

ABSTRACT

The scientific community has believed the potential of waste PET plastics as an effective carbon precursor, however, developing PET-derived activated carbons (PETACs) for a specific application is still a challenge we are facing. To overcome the limitation, a whole chain from development method screening to experiments design, finally to sample optimization, for a sample with promising performance, is proposed in this work. By employing PETACs as CO2 adsorbents, the waste PET plastics, which we believed the "diamond in the rough", have been polished successfully. Therewith the problems of plastic pollution and the greenhouse effect could be simultaneously solved. The first half part of this paper is a mini review: the PETACs development methods were reviewed and the most suitable solution to develop CO2 adsorbent, i.e., the two-step chemical activation method, was selected. In addition to that, the necessary procedure variables and their value range were determined. In the second half part, the central composite design method was applied for experiments design in which the procedure variables obtained were regarded as the independent indicators (factors here) while the performance indicators, including yield, CO2 adsorption uptake, and CO2 over N2 selectivity, were treated as the dependent indicators (responses here). The responses were obtained through the characterization of the samples developed and statistical analysis could be applied to reveal the relations between the factors and responses. A high-value PETAC, P600K600-1.5, with the highest gas selectivity (22.189) and decent CO2 adsorption uptake (3.933 mmol/g) was successfully designed.


Subject(s)
Charcoal , Polyethylene Terephthalates , Adsorption , Carbon Dioxide/chemistry , Plastics
4.
J Hazard Mater ; 426: 127816, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34865899

ABSTRACT

CO is used as a raw material to produce valuable chemicals. Adsorption using solid materials can be employed to separate and recover CO from gas mixtures. In this study, cellulose-based, porous carbons were prepared via hydrothermal carbonization and ZnCl2 activation. The prepared porous carbons were used for CO separation after CuCl loading by a facile solid-state dispersion method to induce π-complexation and eventually enhance the affinity toward CO. The sample with the highest CO uptake of 3.62 mmol g-1 at 298 K and 101 kPa had a carbon:CuCl loading ratio of 1:1. This is the highest reported CO adsorption on porous carbons using CuCl as a π-complexation-inducing material. In addition, several factors, including the selectivity of CO against CO2 and the cyclic stability using vacuum regeneration, demonstrated the potential for industrial applications. Density functional theory (DFT) calculations theoretically elucidated that the presence of small and well-dispersed CuCl clusters induce excellent CO-selective adsorption performance, which is in accordance with the experimental results.

5.
Environ Sci Technol ; 55(17): 11925-11936, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34291911

ABSTRACT

Biomass waste-derived porous carbons (BWDPCs) are a class of complex materials that are widely used in sustainable waste management and carbon capture. However, their diverse textural properties, the presence of various functional groups, and the varied temperatures and pressures to which they are subjected during CO2 adsorption make it challenging to understand the underlying mechanism of CO2 adsorption. Here, we compiled a data set including 527 data points collected from peer-reviewed publications and applied machine learning to systematically map CO2 adsorption as a function of the textural and compositional properties of BWDPCs and adsorption parameters. Various tree-based models were devised, where the gradient boosting decision trees (GBDTs) had the best predictive performance with R2 of 0.98 and 0.84 on the training and test data, respectively. Further, the BWDPCs in the compiled data set were classified into regular porous carbons (RPCs) and heteroatom-doped porous carbons (HDPCs), where again the GBDT model had R2 of 0.99 and 0.98 on the training and 0.86 and 0.79 on the test data for the RPCs and HDPCs, respectively. Feature importance revealed the significance of adsorption parameters, textural properties, and compositional properties in the order of precedence for BWDPC-based CO2 adsorption, effectively guiding the synthesis of porous carbons for CO2 adsorption applications.


Subject(s)
Carbon Dioxide , Carbon , Adsorption , Biomass , Machine Learning , Porosity
6.
J Environ Manage ; 296: 113128, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34246899

ABSTRACT

Value-added materials such as biochar and activated carbon that are produced using thermo-chemical conversion of organic waste have gained an emerging interest for the application in the fields of energy and environment because of their low cost and unique physico-chemical properties. Organic waste-derived materials have multifunctional abilities in the field of environment for capturing greenhouse gases and remediation of contaminated soil and water as well as in the field of energy storage and conversion. This review critically evaluates and discusses the current thermo-chemical approaches for upgrading organic waste to value-added carbon materials, performance enhancement of these materials via activation and/or surface modification, and recent research findings related to energy and environmental applications. Moreover, this review provides detailed guidelines for preparing high-performance organic waste-derived materials and insights for their potential applications. Key challenges associated with the sustainable management of organic waste for ecological and socio-economic benefits and potential solutions are also discussed.


Subject(s)
Charcoal , Soil , Environmental Pollution , Waste Products
7.
J Hazard Mater ; 399: 123010, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32937705

ABSTRACT

Valorization of waste polyethylene terephthalate (PET) plastic into microporous carbon with N-doping treatment was successfully performed in a one-pot synthesis and the N-doped microporous carbon was used for CO2 capture, which can mitigate plastic pollution and climate change simultaneously. The PET-derived microporous carbon developed by KOH activation and urea treatment in a one-pot synthesis at 700 °C exhibited the highest CO2 adsorption uptake of 6.23 mmol g-1 at 0 °C and 4.58 mmol g-1 at 25 °C (1 atm). The Langmuir and pseudo second-order models displayed well-fitting relationships with equilibrium and kinetic experimental data obtained in this study. The N-doped microporous carbon showed high CO2 selectivity over N2, implying that it is feasible for treating flue gases (10% CO2 and 90% N2) at 50 °C. In addition, the CO2 uptake was not only affected by micropores but also related with nitrogen and oxygen functional groups. Compared to the porous carbon prepared by two-pot synthesis where KOH activation and urea treatment were conducted separately, the porous carbon prepared by one-pot synthesis had higher oxygen contents and higher CO2 adsorption uptake. All of findings implied that the N-doped microporous carbon was successfully developed from waste PET plastic for capturing CO2 and can play a promising role in both sustainable waste management and environmental protection.

8.
Sci Total Environ ; 739: 139845, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32758935

ABSTRACT

The CO2 concentration in the atmosphere is increasing and threatening the earth's climate. Selective CO2 capture at large point sources will help to reduce the CO2 emissions to the atmosphere. Biochar with microporous structure could be a potential material to capture CO2. The impact of feedstock type, pyrolysis temperature and steam activation of biochars were evaluated for CO2 adsorption capacity. Pine sawdust biochars were produced at 550 °C, and steam activated for 45 min at the same temperature after completing the pyrolysis (PS550 and PSS550). Paper mill sludge biochars were produced at 300 and 600 °C (PMS300 and PMS600). The CO2 adsorption capacity of biochars was tested at 25 °C using a volumetric sorption analyzer. Pine sawdust biochars showed significantly higher CO2 adsorption capacity than paper mill sludge biochars due to high surface area and microporosity. Pine sawdust biochars were then evaluated for dynamic adsorption under representative post-combustion flue gas concentration conditions (15% CO2, 85% N2) using a breakthrough rig. Both materials showed selective CO2 uptake over N2 which is the major component along with CO2 in flue gas. PSS550 had slightly higher CO2 adsorption capacity (0.73 mmol g^-1 vs 0.67 mmol g^-1) and CO2 over N2 selectivity (26 vs 18) than PS550 possibly due to increase of microporosity, surface area, and oxygen containing basic functional groups through steam activation. Pine sawdust biochar is an environmentally friendly and low-cost material to capture CO2.


Subject(s)
Carbon Dioxide , Sewage , Adsorption , Charcoal , Porosity
9.
Environ Pollut ; 265(Pt A): 114868, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32534237

ABSTRACT

Thermo-chemical processes for converting plastic wastes into useful materials are considered promising technologies to mitigate the environmental pollution caused by plastic wastes. In this study, polyethylene terephthalate (PET) plastic wastes were used to develop cost-effective and value-added porous carbons; the developed porous carbons were subsequently tested for capturing CF4, a greenhouse gas with a high global-warming potential. The activation temperature was varied from 600 °C to 1000 °C and the mass ratio of KOH/carbon ranged from 1 to 3 in the preparation process and their effects on the textural properties and CF4-capture performance of the PET plastic waste-derived porous carbons were investigated. The CF4-adsorption uptake was dictated by the specific surface area and pore volume of narrow micropores less than 0.9 nm in diameter. PET-K(2)700, which was developed by KOH activation at 700 °C and KOH/carbon mass ratio of 2, showed the highest CF4-adsorption uptake of 2.43 mmol g-1 at 25 °C and 1 atm. Also, the CF4-adsorption data were fitted well with the Langmuir isotherm model and pseudo second-order kinetic model. The PET plastic waste-derived porous carbons exhibited a high CF4 uptake, good CF4/N2 selectivity at relatively low CF4 pressures, easy regeneration, rapid adsorption/desorption kinetics, and excellent recyclability, which are promising for practical CF4-capture applications.


Subject(s)
Carbon , Polyethylene Terephthalates , Adsorption , Kinetics , Porosity
10.
J Hazard Mater ; 391: 121147, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32145924

ABSTRACT

Biochar is newly proposed as an innovative and cost-effective material to capture CO2. In this study, biochar was produced from feedstock mixtures of food waste and wood waste (i.e., 20%:80% WFW20, 30%:70% WFW30 and 40%:60% WFW40) by gasification. The two biochar adsorbents containing the highest percentage of food waste, i.e., WFW40-K and WFW40-KC, were activated by KOH and KOH + CO2, respectively. The biochar adsorbents were then tested for CO2 adsorption at room temperature of 25 °C by using a volumetric sorption analyzer. The WFW20 showed the highest CO2 adsorption capacity, while higher percentage of food waste in the feedstock was unfavorable for the CO2 adsorption. The presence of N and S on the biochar surface was the primary contributor to the high CO2 uptake on WFW20. The development of micropores by KOH activation significantly increased the CO2 adsorption on WFW40-K, but KOH + CO2 activation could not further increase the development of micropores and subsequent CO2 adsorption. Moreover, WFW40-K showed >99% recyclability during 10 consecutive adsorption-desorption cycles. The biochars derived from biowaste (food waste and wood waste) could be effective adsorbents for CO2 capture by providing green solution for food waste recycling.


Subject(s)
Carbon Dioxide/chemistry , Carbon Sequestration , Charcoal/chemistry , Food , Waste Products , Wood , Adsorption , Hydroxides/chemistry , Potassium Compounds/chemistry , Pyrolysis
11.
Data Brief ; 21: 2059-2062, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30533452

ABSTRACT

The data presented in this article are related to the research article entitled: "Electrochemical characterization of Raney nickel electrodes prepared by atmospheric plasma spraying for alkaline water electrolysis" (Kim et al., 2018). This article describes the characterization of raw Ni-Al alloy and Raney Ni powders via X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS), and presents the EDS data of the prepared electrodes.

12.
Nanoscale ; 10(27): 13159-13164, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-29963676

ABSTRACT

Unraveling nanoscale spin structures has long been an important activity addressing various scientific interests, that are also readily adaptable to technological applications. This has invigorated the development of versatile nanoprobes suitable for imaging specimens under native conditions. Here we have demonstrated the resonant coherent diffraction of an artificial quasicrystal magnet with circularly polarized X-rays. The nanoscale magnetic structure was revealed from X-ray speckle patterns by comparing with micromagnetic simulations, as a step toward understanding the intricate relationship between the chemical and spin structures in an aperiodic quasicrystal lattice. Femtosecond X-ray pulses from free electron lasers are expected to immediately extend the current work to nanoscale structure investigations of ultrafast spin dynamics, surpassing the present spatio-temporal resolution.

13.
ACS Appl Mater Interfaces ; 10(25): 21213-21223, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29911866

ABSTRACT

CO2 capture using polyethyleneimine (PEI)-impregnated silica adsorbents has been receiving a lot of attention. However, the absence of physical stability (evaporation and leaching of amine) and chemical stability (urea formation) of the PEI-impregnated silica adsorbent has been generally established. Therefore, in this study, a double-layer impregnated structure, developed using modified PEI, is newly proposed to enhance the physical and chemical stabilities of the adsorbent. Epoxy-modified PEI and diepoxide-cross-linked PEI were impregnated via a dry impregnation method in the first and second layers, respectively. The physical stability of the double-layer structured adsorbent was noticeably enhanced when compared to the conventional adsorbents with a single layer. In addition to the enhanced physical stability, the result of simulated temperature swing adsorption cycles revealed that the double-layer structured adsorbent presented a high potential working capacity (3.5 mmol/g) and less urea formation under CO2-rich regeneration conditions. The enhanced physical and chemical stabilities as well as the high CO2 working capacity of the double-layer structured adsorbent were mainly attributed to the second layer consisting of diepoxide-cross-linked PEI.

14.
Chemosphere ; 193: 1087-1093, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29874736

ABSTRACT

Phosphorous is an essential limiting nutrient for which there is no substitute. Its efficient recovery from sewage treatment plants is important to mitigate both dependence on limited reserves of exploitable phosphate rock and eutrophication of surface waters. Here, we evaluate the use of calcium silicate hydrates (CSH) to recover phosphorous eluted from sewage sludge. Phosphorous elution experiments were conducted with acid and base leaching solutions. The phosphorous recovery efficiency with CSH was compared to that with other calcium compounds, and the final product was analyzed to assess its potential value as fertilizer. Dried sewage sludge from the West Lake Ecological Water Resource Center, South Korea, having 123 g-P kg-1, was used for these tests. About 55% of the phosphorus in the sludge was released with an elution solution of 0.1 M H2SO4. A dose of 15 g L-1 of CSH recovered 89.6% of the eluted phosphorous without the need for additional pre-treatment, and the resulting calcium phosphate product (in brushite form, based on XRD analysis) exhibited superior settleability than that resulting from Ca(OH)2- and CaCl2-induced precipitation. XRD peaks of the calcium sulfate hydrate (in gypsum form) and residual CSH were also observed. The final product contained a relatively high content of the total P2O5 eluted in a 2% citric acid solution (43.1%), which suggests that it might be readily used to fertilize crops.


Subject(s)
Calcium Compounds/chemistry , Phosphorus/chemistry , Sewage/chemistry , Silicates/chemistry
15.
ACS Appl Mater Interfaces ; 9(22): 18790-18798, 2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28537377

ABSTRACT

Fluorocarbon (CxFy) anode materials were developed for lithium- and sodium-ion batteries through a facile one-step carbonization of a single precursor, polyvinylidene fluoride (PVDF). Interconnected carbon network structures were produced with doped fluorine in high-temperature carbonization at 500-800 °C. The fluorocarbon anodes derived from the PVDF precursor showed higher reversible discharge capacities of 735 mAh g-1 and 269 mAh g-1 in lithium- and sodium-ion batteries, respectively, compared to the commercial graphitic carbon. After 100 charge/discharge cycles, the fluorocarbon showed retentions of 91.3% and 97.5% in lithium (at 1C) and sodium (at 200 mA g-1) intercalation systems, respectively. The effects of carbonization temperature on the electrochemical properties of alkali metal ion storage were thoroughly investigated and documented. The specific capacities in lithium- and sodium-ion batteries were dependent on the fluorine content, indicating that the highly electronegative fluorine facilitates the insertion/extraction of lithium and sodium ions in rechargeable batteries.

16.
ChemSusChem ; 10(8): 1701-1709, 2017 04 22.
Article in English | MEDLINE | ID: mdl-28168850

ABSTRACT

Although solid adsorption processes offer attractive benefits, such as reduced energy demands and penalties compared with liquid absorption processes, there are still pressing needs for solid adsorbents with high adsorption capacities, thermal efficiencies, and energy-intensive regeneration in gas-treatment processes. The CO2 adsorption capacities of layered double oxides (LDOs), which are attractive solid adsorbents, have an asymmetric volcano-type correlation with their relative crystallinities. Furthermore, new collective adsorption properties (adsorption capacity, adsorptive energy and charge-transfer amount based on the adsorbent weight) are proposed based on density functional theory (DFT) calculations and measured surface areas. The correlation of these collective properties with their crystallinities is in good agreement with the experimentally measured CO2 adsorptive capacity trend, providing a predictive guide for the development of solid adsorbents for gas-adsorption processes.


Subject(s)
Aluminum Oxide/chemistry , Carbon Dioxide/chemistry , Magnesium Oxide/chemistry , Adsorption , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission
17.
Sci Rep ; 6: 34590, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27698448

ABSTRACT

Microporous carbon compartments (MCCs) were developed via controlled carbonization of wheat flour producing large cavities that allow CO2 gas molecules to access micropores and adsorb effectively. KOH activation of MCCs was conducted at 700 °C with varying mass ratios of KOH/C ranging from 1 to 5, and the effects of activation conditions on the prepared carbon materials in terms of the characteristics and behavior of CO2 adsorption were investigated. Textural properties, such as specific surface area and total pore volume, linearly increased with the KOH/C ratio, attributed to the development of pores and enlargement of pores within carbon. The highest CO2 adsorption capacities of 5.70 mol kg-1 at 0 °C and 3.48 mol kg-1 at 25 °C were obtained for MCC activated with a KOH/C ratio of 3 (MCC-K3). In addition, CO2 adsorption uptake was significantly dependent on the volume of narrow micropores with a pore size of less than 0.8 nm rather than the volume of larger pores or surface area. MCC-K3 also exhibited excellent cyclic stability, facile regeneration, and rapid adsorption kinetics. As compared to the pseudo-first-order model, the pseudo-second-order kinetic model described the experimental adsorption data methodically.

18.
Inorg Chem ; 55(9): 4206-10, 2016 05 02.
Article in English | MEDLINE | ID: mdl-27064301

ABSTRACT

The sol-gel synthesis method is an attractive technology for the fabrication of ceramic films due to its preparation simplicity and ease of varying the metal composition. However, this technique presents some limitations in relation to the film thickness. Notably, when the film thickness exceeds the critical limit, large tensile stresses occur, resulting in a cracked morphology. In this study, a secondary crystal growth method was introduced as a post-treatment process for Mg/Al hydrotalcite-based films synthesized by the sol-gel method, which typically present a cracked morphology. The cracked hydrotalcite-based film was hydrothermally treated for the secondary growth of hydrotalcite crystals. In the resulting film, hydrotalcite grew with a vertical orientation, and the gaps formed during the sol-gel synthesis were filled with hydrotalcite after the crystal growth. The secondary crystal growth method provides a new solution for cracked ceramic films synthesized by the sol-gel method.

19.
ACS Appl Mater Interfaces ; 8(9): 5763-7, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26927529

ABSTRACT

Hydrotalcites having a Mg/Al molar ratio between 3 and 30 have been synthesized as promising high-temperature CO2 sorbents. The existence of NaNO3 in the hydrotalcite structure, which originates from excess magnesium nitrate in the precursor, markedly increases CO2 sorption uptake by hydrotalcite up to the record high value of 9.27 mol kg(-1) at 240 °C and 1 atm CO2.

20.
J Chromatogr A ; 1365: 106-14, 2014 Oct 24.
Article in English | MEDLINE | ID: mdl-25240652

ABSTRACT

The economically-efficient separation of formic acid from acetic acid and succinic acid has been a key issue in the production of formic acid with the Actinobacillus bacteria fermentation. To address this issue, an optimal three-zone simulated moving bed (SMB) chromatography for continuous separation of formic acid from acetic acid and succinic acid was developed in this study. As a first step for this task, the adsorption isotherm and mass-transfer parameters of each organic acid on the qualified adsorbent (Amberchrom-CG300C) were determined through a series of multiple frontal experiments. The determined parameters were then used in optimizing the SMB process for the considered separation. During such optimization, the additional investigation for selecting a proper SMB port configuration, which could be more advantageous for attaining better process performances, was carried out between two possible configurations. It was found that if the properly selected port configuration was adopted in the SMB of interest, the throughout and the formic-acid product concentration could be increased by 82% and 181% respectively. Finally, the optimized SMB process based on the properly selected port configuration was tested experimentally using a self-assembled SMB unit with three zones. The SMB experimental results and the relevant computer simulation verified that the developed process in this study was successful in continuous recovery of formic acid from a ternary organic-acid mixture of interest with high throughput, high purity, high yield, and high product concentration.


Subject(s)
Acetic Acid/isolation & purification , Actinobacillus/metabolism , Chromatography, High Pressure Liquid/methods , Formates/isolation & purification , Succinic Acid/isolation & purification , Adsorption , Computer Simulation , Fermentation , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...