Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Microbiol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977908

ABSTRACT

Sequencing surveys of microbial communities in hosts, oceans and soils have revealed ubiquitous patterns linking community composition to environmental conditions. While metabolic capabilities restrict the environments suitable for growth, the influence of ecological interactions on patterns observed in natural microbiomes remains uncertain. Here we use denitrification as a model system to demonstrate how metagenomic patterns in soil microbiomes can emerge from pH-dependent interactions. In an analysis of a global soil sequencing survey, we find that the abundances of two genotypes trade off with pH; nar gene abundances increase while nap abundances decrease with declining pH. We then show that in acidic conditions strains possessing nar fail to grow in isolation but are enriched in the community due to an ecological interaction with nap genotypes. Our study provides a road map for dissecting how associations between environmental variables and gene abundances arise from environmentally modulated community interactions.

2.
bioRxiv ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38559185

ABSTRACT

The metabolic activity of soil microbiomes plays a central role in carbon and nitrogen cycling. Given the changing climate, it is important to understand how the metabolism of natural communities responds to environmental change. However, the ecological, spatial, and chemical complexity of soils makes understanding the mechanisms governing the response of these communities to perturbations challenging. Here, we overcome this complexity by using dynamic measurements of metabolism in microcosms and modeling to reveal regimes where a few key mechanisms govern the response of soils to environmental change. We sample soils along a natural pH gradient, construct >1500 microcosms to perturb the pH, and quantify the dynamics of respiratory nitrate utilization, a key process in the nitrogen cycle. Despite the complexity of the soil microbiome, a minimal mathematical model with two variables, the quantity of active biomass in the community and the availability of a growth-limiting nutrient, quantifies observed nitrate utilization dynamics across soils and pH perturbations. Across environmental perturbations, changes in these two variables give rise to three functional regimes each with qualitatively distinct dynamics of nitrate utilization over time: a regime where acidic perturbations induce cell death that limits metabolic activity, a nutrient-limiting regime where nitrate uptake is performed by dominant taxa that utilize nutrients released from the soil matrix, and a resurgent growth regime in basic conditions, where excess nutrients enable growth of initially rare taxa. The underlying mechanism of each regime is predicted by our interpretable model and tested via amendment experiments, nutrient measurements, and sequencing. Further, our data suggest that the long-term history of environmental variation in the wild influences the transitions between functional regimes. Therefore, quantitative measurements and a mathematical model reveal the existence of qualitative regimes that capture the mechanisms and dynamics of a community responding to environmental change.

3.
Sci Rep ; 14(1): 4536, 2024 02 24.
Article in English | MEDLINE | ID: mdl-38402369

ABSTRACT

We examined potato rhizosphere bacterial and fungal communities across three regions: Cheongju, Pyeongchang, and Gangneung. These regions have varying soil and climate conditions, resulting in different yields. We found that precipitation was the main limiting factor in our study while soil physiochemical factors affect bacterial and fungal microbiota in correlation with yield. Both bacterial and fungal microbiota showed distinct patterns according to the regions. ASVs positively correlated with yield were predominantly found in the Pyeongchang region which also produced the highest yields, while ASVs negatively correlated with yield were associated with Gangneung where the lowest yields were observed. The greatest bacterial and fungal diversity was detected in Pyeongchang consisting of Propionibacteriales, Burkholderiales, and Vicinamibacteriales. Gangneung, on the other hand primarily belong to Sordariales, Mortierellales, Cystofilobasidiales, and Tremellales. The putative yield-negative ASVs detected in Gangneung may have been influenced by drought stress. This work has highlighted key bacterial and fungal taxa as well as core taxa that may potentially be associated with high and low yields of potato in relation to metadata which includes soil chemical and physical parameters as well as weather data. Taken together we suggest that this information can be used to assess site suitability for potato production.


Subject(s)
Basidiomycota , Microbiota , Solanum tuberosum , Rhizosphere , Plant Roots/microbiology , Bacteria/genetics , Soil , Republic of Korea , Soil Microbiology
4.
Microbiol Resour Announc ; 13(2): e0084723, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38226831

ABSTRACT

Moesziomyces antarcticus (anamorph: Pseudozyma antarctica) is a basidiomycetous yeast in the Ustilaginaceae family and is a core member of the rice seed microbiome. M. antarcticus RS1 was isolated from surface-sterilized rice seeds. This 18.287 Mb draft genome of M. antarcticus RS1 is comprised of a 60.8% GC content and 6,817 protein-coding genes.

5.
bioRxiv ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38014336

ABSTRACT

Microbial metabolism sustains life on Earth. Sequencing surveys of communities in hosts, oceans, and soils have revealed ubiquitous patterns linking the microbes present, the genes they possess, and local environmental conditions. One prominent explanation for these patterns is environmental filtering: local conditions select strains with particular traits. However, filtering assumes ecological interactions do not influence patterns, despite the fact that interactions can and do play an important role in structuring communities. Here, we demonstrate the insufficiency of the environmental filtering hypothesis for explaining global patterns in topsoil microbiomes. Using denitrification as a model system, we find that the abundances of two characteristic genotypes trade-off with pH; nar gene abundances increase while nap abundances decrease with declining pH. Contradicting the filtering hypothesis, we show that strains possessing the Nar genotype are enriched in low pH conditions but fail to grow alone. Instead, the dominance of Nar genotypes at low pH arises from an ecological interaction with Nap genotypes that alleviates nitrite toxicity. Our study provides a roadmap for dissecting how global associations between environmental variables and gene abundances arise from environmentally modulated community interactions.

6.
Gut Microbes ; 14(1): 2149020, 2022.
Article in English | MEDLINE | ID: mdl-36472468

ABSTRACT

Rheumatoid arthritis (RA) is closely associated with the oral and gut microbiomes. Fungal cell wall components initiate inflammatory arthritis in mouse models. However, little is known regarding the role of the fungal community in the pathogenesis of RA. To evaluate the association between RA and the gut microbiome, investigations of bacterial and fungal communities in patients with RA are necessary. Therefore, we investigated the compositions and associations of fecal bacterial and fungal communities in 30 healthy controls and 99 patients with RA. The relative abundances of Bifidobacterium and Blautia decreased, whereas the relative abundance of Streptococcus increased, in patients with RA. The relative abundance of Candida in the fecal fungal community was higher in patients with RA than in healthy controls, while the relative abundance of Aspergillus was higher in healthy controls than in patients with RA. Candida species-specific gene amplification showed that C. albicans was the most abundant species of Candida. Ordination analysis and random forest classification models supported the findings of structural changes in bacterial and fungal communities. Aspergillus was the core fecal fungal genus in healthy controls, although Saccharomyces spp. are typically predominant in Western cohorts. In addition, bacterial-fungal association analyses showed that the hub node had shifted from fungi to bacteria in patients with RA. The finding of fungal dysbiosis in patients with RA suggests that fungi play critical roles in the fecal microbial communities and pathogenesis of RA.


Subject(s)
Arthritis, Rheumatoid , Gastrointestinal Microbiome , Animals , Mice
7.
Front Microbiol ; 13: 953300, 2022.
Article in English | MEDLINE | ID: mdl-35958158

ABSTRACT

Microbial co-occurrence network analysis is being widely used for data exploration in plant microbiome research. Still, challenges lie in how well these microbial networks represent natural microbial communities and how well we can interpret and extract eco-evolutionary insights from the networks. Although many technical solutions have been proposed, in this perspective, we touch on the grave problem of kingdom-level bias in network representation and interpretation. We underscore the eco-evolutionary significance of using cross-kingdom (bacterial-fungal) co-occurrence networks to increase the network's representability of natural communities. To do so, we demonstrate how ecosystem-level interpretation of plant microbiome evolution changes with and without multi-kingdom analysis. Then, to overcome oversimplified interpretation of the networks stemming from the stereotypical dichotomy between bacteria and fungi, we recommend three avenues for ecological interpretation: (1) understanding dynamics and mechanisms of co-occurrence networks through generalized Lotka-Volterra and consumer-resource models, (2) finding alternative ecological explanations for individual negative and positive fungal-bacterial edges, and (3) connecting cross-kingdom networks to abiotic and biotic (host) environments.

8.
Commun Biol ; 5(1): 772, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35915150

ABSTRACT

Vertical transmission of microbes is crucial for the persistence of host-associated microbial communities. Although vertical transmission of seed microbes has been reported from diverse plants, ecological mechanisms and dynamics of microbial communities from parent to progeny remain scarce. Here we reveal the veiled ecological mechanism governing transmission of bacterial and fungal communities in rice across two consecutive seasons. We identify 29 bacterial and 34 fungal members transmitted across generations. Abundance-based regression models allow to classify colonization types of the microbes. We find that they are late colonizers dominating each community at the ripening stage. Ecological models further show that the observed temporal colonization patterns are affected by niche change and neutrality. Source-sink modeling reveals that parental seeds and stem endosphere are major origins of progeny seed microbial communities. This study gives empirical evidence for ecological mechanism and dynamics of bacterial and fungal communities as an ecological continuum during seed-to-seed transmission.


Subject(s)
Microbiota , Mycobiome , Oryza , Bacteria/genetics , Seeds
9.
Front Microbiol ; 12: 719486, 2021.
Article in English | MEDLINE | ID: mdl-34539610

ABSTRACT

The soil environment determines plants' health and performance during their life cycle. Therefore, ecological understanding on variations in soil environments, including physical, chemical, and biological properties, is crucial for managing agricultural fields. Here, we present a comprehensive and extensive blueprint of the bacterial, archaeal, and fungal communities in rice paddy soils with differing soil types and chemical properties. We discovered that natural variations of soil nutrients are important factors shaping microbial diversity. The responses of microbial diversity to soil nutrients were related to the distribution of microbial trophic lifestyles (oligotrophy and copiotrophy) in each community. The compositional changes of bacterial and archaeal communities in response to soil nutrients were mainly governed by oligotrophs, whereas copiotrophs were mainly involved in fungal compositional changes. Compositional shift of microbial communities by fertilization is linked to switching of microbial trophic lifestyles. Random forest models demonstrated that depletion of prokaryotic oligotrophs and enrichment of fungal copiotrophs are the dominant responses to fertilization in low-nutrient conditions, whereas enrichment of putative copiotrophs was important in high-nutrient conditions. Network inference also revealed that trophic lifestyle switching appertains to decreases in intra- and inter-kingdom microbial associations, diminished network connectivity, and switching of hub nodes from oligotrophs to copiotrophs. Our work provides ecological insight into how soil nutrient-driven variations in microbial communities affect soil health in modern agricultural systems.

10.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: mdl-34266952

ABSTRACT

The flowering plant life cycle consists of alternating haploid (gametophyte) and diploid (sporophyte) generations, where the sporophytic generation begins with fertilization of haploid gametes. In Arabidopsis, genome-wide DNA demethylation is required for normal development, catalyzed by the DEMETER (DME) DNA demethylase in the gamete companion cells of male and female gametophytes. In the sporophyte, postembryonic growth and development are largely dependent on the activity of numerous stem cell niches, or meristems. Analyzing Arabidopsis plants homozygous for a loss-of-function dme-2 allele, we show that DME influences many aspects of sporophytic growth and development. dme-2 mutants exhibited delayed seed germination, variable root hair growth, aberrant cellular proliferation and differentiation followed by enhanced de novo shoot formation, dysregulation of root quiescence and stomatal precursor cells, and inflorescence meristem (IM) resurrection. We also show that sporophytic DME activity exerts a profound effect on the transcriptome of developing Arabidopsis plants, including discrete groups of regulatory genes that are misregulated in dme-2 mutant tissues, allowing us to potentially link phenotypes to changes in specific gene expression pathways. These results show that DME plays a key role in sporophytic development and suggest that DME-mediated active DNA demethylation may be involved in the maintenance of stem cell activities during the sporophytic life cycle in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Gene Expression Regulation, Plant , Germ Cells, Plant/enzymology , Meristem/enzymology , N-Glycosyl Hydrolases/metabolism , Trans-Activators/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Cell Differentiation , Cell Proliferation , Germ Cells, Plant/cytology , Meristem/genetics , Meristem/growth & development , N-Glycosyl Hydrolases/genetics , Trans-Activators/genetics
11.
Epigenet Insights ; 13: 2516865720938677, 2020.
Article in English | MEDLINE | ID: mdl-32974606

ABSTRACT

Epigenetic modulation by DNA methylation is associated with aberrant gene expression in sensory neurons, which consequently leads to pathological pain responses. In this study, we sought to investigate whether peripheral inflammation alters global DNA methylation in trigeminal ganglia (TG) and results in abnormal expression of pro-nociceptive genes. Our results show that peripheral inflammation remotely reduced the level of global DNA methylation in rat TG with a concurrent reduction in DNMT1 and DNMT3a expression. Using unbiased steps, we selected the following pro-nociceptive candidate genes that are potentially regulated by DNA methylation: TRPV1, TRPA1, P2X3, and PIEZO2. Inhibition of DNMT with 5-Aza-dC in dissociated TG cells produced dose-dependent upregulation of TRPV1, TRPA1, and P2X3. Systemic treatment of animals with 5-Aza-dC significantly increased the expression of TRPV1, TRPA1, and PIEZO2 in TG. Furthermore, the overexpression of DNMT3a, as delivered by a lentiviral vector, significantly downregulated TRPV1 and PIEZO2 expression and also reliably decreased TRPA1 and P2X3 transcripts. MeDIP revealed that this overexpression also significantly enhanced methylation of CGIs associated with TRPV1 and TRPA1. In addition, bisulfite sequencing data indicated that the CGI associated with TRPA1 was methylated in a pattern catalyzed by DNMT3a. Taken together, our results show that all 4 pro-nociceptive genes are subject to epigenetic modulation via DNA methylation, likely via DNMT3a under inflammatory conditions. These findings provide the first evidence for the functional importance of DNA methylation as an epigenetic factor in the transcription of pro-nociceptive genes in TG that are implicated in pathological orofacial pain responses.

12.
Microbiome ; 8(1): 20, 2020 02 14.
Article in English | MEDLINE | ID: mdl-32059747

ABSTRACT

BACKGROUND: Plant-associated microbiomes, which are shaped by host and environmental factors, support their hosts by providing nutrients and attenuating abiotic and biotic stresses. Although host genetic factors involved in plant growth and immunity are known to shape compositions of microbial communities, the effects of host evolution on microbial communities are not well understood. RESULTS: We show evidence that both host speciation and domestication shape seed bacterial and fungal community structures. Genome types of rice contributed to compositional variations of both communities, showing a significant phylosymbiosis with microbial composition. Following the domestication, abundance inequality of bacterial and fungal communities also commonly increased. However, composition of bacterial community was relatively conserved, whereas fungal membership was dramatically changed. These domestication effects were further corroborated when analyzed by a random forest model. With these changes, hub taxa of inter-kingdom networks were also shifted from fungi to bacteria by domestication. Furthermore, maternal inheritance of microbiota was revealed as a major path of microbial transmission across generations. CONCLUSIONS: Our findings show that evolutionary processes stochastically affect overall composition of microbial communities, whereas dramatic changes in environments during domestication contribute to assembly of microbiotas in deterministic ways in rice seed. This study further provides new insights on host evolution and microbiome, the starting point of the holobiome of plants, microbial communities, and surrounding environments.


Subject(s)
Bacteria/classification , Domestication , Fungi/classification , Microbiota , Oryza/microbiology , Seeds/microbiology , Biodiversity , Genotype , Oryza/genetics , Rhizosphere , Seeds/genetics , Symbiosis
13.
Proc Math Phys Eng Sci ; 470(2165): 20130564, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24808749

ABSTRACT

For a sufficiently slender axially symmetric body placed in a uniform stream, only convectively unstable modes are found in previous experiments. This work imposes theoretically and computationally a pair of most unstable helical modes, symmetrically and asymmetrically. The Reynolds stress modification of the developing laminar mean wake flow is modified into an elliptic-like cross section for symmetrical forcing; the consequences of unequal upstream amplitudes are also explored. Energy-transfer mechanisms between the mean flow and the relevant dominant modes and between the modes through 'triad interactions' are studied. The results from dynamical considerations provide the physical understanding of the generation of a standing wave mode at twice the azimuthal wavenumber; it is necessary that the wave envelopes of participating modes, including that of the mean flow, overlap in their spatial development, which is a necessary supplement to kinematical conditions for such interactions to take place effectively. Standing wave motions, which are otherwise only found naturally in wakes behind blunt-trailing-edge axisymmetric bodies, can be rendered present through appropriate forcing and nonlinear interactions behind very slender axisymmetric bodies.

14.
J Neurosci Methods ; 228: 50-6, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24657494

ABSTRACT

BACKGROUND: Current methods to measure eye-hand coordination (EHC) have been widely applied in research and practical fields. However, some aspects of the methods, such as subjectivity, high price, portability, and high appraisal contribute to difficulties in EHC testing. NEW METHODS: The test was developed on an Apple iPad(®) and involves tracing up to 13 shapes with a stylus pen. The time taken to complete each trace and the spatial accuracy of the tracing is automatically recorded. The difficulty level for each shape was evaluated theoretically based on the complexity and length of outline. Ten adults aged 31.5±7.8 years and five children aged 9.4±1.1 years with normal vision participated. RESULTS: In adults, the time taken to trace and number of errors significantly decreased from the first to the second attempt (p<0.05) but not thereafter, suggesting a learning effect with repeatability after a practice attempt. Time taken and number of errors in children were both higher in monocular than binocular viewing conditions (p=0.02 and p<0.01, respectively) while adults' performance was similar in both viewing conditions. COMPARISON WITH EXISTING METHODS: Existing EHC tests are subjective in clinics and require higher skills and cost in research, and measure gross EHC. This novel test has been developed to address some of the limitations. CONCLUSIONS: The test is engaging for children and adults and is an objective method with potential for the assessment of fine EHC, suited to clinic-based and research use in ophthalmic or brain trauma settings, and in developmental disorders.


Subject(s)
Eye Movements/physiology , Feedback, Physiological/physiology , Hand/physiology , Psychomotor Performance/physiology , Adult , Age Factors , Alkaloids , Child , Computer-Aided Design/instrumentation , Female , Humans , Male , Time Factors , Young Adult
15.
PLoS One ; 7(10): e47497, 2012.
Article in English | MEDLINE | ID: mdl-23144703

ABSTRACT

Originally the novel protein Blom7α was identified as novel pre-mRNA splicing factor that interacts with SNEV(Prp19/Pso4), an essential protein involved in extension of human endothelial cell life span, DNA damage repair, the ubiquitin-proteasome system, and pre-mRNA splicing. Blom7α belongs to the heteronuclear ribonucleoprotein K homology (KH) protein family, displaying 2 KH domains, a well conserved and widespread RNA-binding motif. In order to identify specific sequence binding motifs, we here used Systematic Evolution of Ligands by Exponential Enrichment (SELEX) with a synthetic RNA library. Besides sequence motifs like (U/A)(1-4) C(2-6) (U/A)(1-5), we identified an AC-rich RNA-aptamer that we termed AK48 (Aptamer KH-binding 48), binding to Blom7α with high affinity. Addition of AK48 to pre-mRNA splicing reactions in vitro inhibited the formation of mature spliced mRNA and led to a slight accumulation of the H complex of the spliceosome. These results suggest that the RNA binding activity of Blom7α might be required for pre-mRNA splicing catalysis. The inhibition of in-vitro splicing by the small RNA AK48 indicates the potential use of small RNA molecules in targeting the spliceosome complex as a novel target for drug development.


Subject(s)
Aptamers, Nucleotide/metabolism , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , RNA Precursors/metabolism , RNA Splicing , AT Rich Sequence/genetics , Amino Acid Sequence , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/pharmacology , Base Sequence , Binding Sites/genetics , Electrophoretic Mobility Shift Assay , HeLa Cells , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Humans , Molecular Sequence Data , Mutation , Protein Binding , RNA Precursors/genetics , SELEX Aptamer Technique/methods , Sequence Homology, Amino Acid , Spliceosomes/drug effects , Spliceosomes/genetics , Spliceosomes/metabolism
16.
J Biol Chem ; 284(42): 29193-204, 2009 Oct 16.
Article in English | MEDLINE | ID: mdl-19641227

ABSTRACT

The removal of introns from pre-mRNA is performed by the spliceosome that stepwise assembles on the pre-mRNA before performing two catalytic steps. The spliceosome-associated CDC5L-SNEV(Prp19-Pso4) complex is implicated in activation of the second catalytic step of pre-mRNA splicing, and one of its members, SNEV(Prp19-Pso4), is also implicated in spliceosome assembly. To identify interaction partners of SNEVPrp19-Pso4, we have performed yeast two-hybrid screenings. Among the putative binding partners was a so far uncharacterized protein carrying two heterogeneous nuclear ribonucleoprotein K homology domains that we termed Blom7alpha. Blom7alpha is expressed in all tissues tested, and at least three splice variants exist. After confirming direct and physical interaction of SNEV and Blom7alpha, we investigated if it plays a functional role during pre-mRNA splicing. Indeed, Blom7alpha co-localizes and co-precipitates with splicing factors and pre-mRNA and is present in affinity-purified spliceosomes. More importantly, addition of Blom7alpha to HeLa nuclear extracts increased splicing activity in a dose-dependent manner. Furthermore, we tested if Blom7alpha influences splice site selection using two different minigene constructs. Indeed, both 5'- as well as 3'-site selection was altered upon Blom7alpha overexpression. Thus we suggest that Blom7alpha is a novel splicing factor of the K homology domain family that might be implicated in alternative splicing by helping to position the CDC5L-SNEV(Prp19-Pso4) complex at the splice sites.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein K/chemistry , Heterogeneous-Nuclear Ribonucleoproteins/chemistry , Alternative Splicing , Animals , COS Cells , Cell Nucleus/metabolism , Chlorocebus aethiops , Dose-Response Relationship, Drug , Escherichia coli/genetics , HeLa Cells , Humans , Introns , Protein Binding , Protein Structure, Tertiary , RNA Precursors/metabolism , Saccharomyces cerevisiae/genetics , Two-Hybrid System Techniques
17.
Biochim Biophys Acta ; 1747(1): 67-80, 2005 Feb 14.
Article in English | MEDLINE | ID: mdl-15680240

ABSTRACT

The search for new structures in tumors by genomics and proteomics methods is a major goal in tumor biology and may lead to the detection of markers or antigens for the generation of tumor vaccines. The aim of this study was to identify proteins that have been predicted so far based upon their nucleic acid sequence only or show poor identity to known proteins in tumor cell lines. Cell lines of neuroblastoma, colorectal, cervix carcinoma, adenocarcinoma of the ovary, lung and breast cancer, promyelocytic leukaemia, rhabdomyosarcoma, osteosarcoma and malignant melanoma were used. Cell lysates were run on 2D gel electrophoresis with subsequent in-gel digestion and MALDI-TOF-TOF analysis. A series of 10 hypothetical proteins (HPs) were observed and three of these proteins, hypothetical protein (Q9BTE6), CGI-83 protein (Q9Y392) and similar to CG11334 (Q9BV20), were so far described in tumors exclusively. The other seven proteins were already detected at the transcriptional level in normal and tumor cell lines or tissues. In conclusion, the three HPs observed in lung cancer and malignant melanoma may be candidates for development of tumor markers and generation of tumor vaccines.


Subject(s)
Biomarkers, Tumor/analysis , Neoplasm Proteins/analysis , Proteomics , Amino Acid Sequence , Biomarkers, Tumor/genetics , Cell Line, Tumor , Humans , Molecular Sequence Data , Neoplasm Proteins/genetics
18.
J Neuroimmunol ; 140(1-2): 159-62, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12864984

ABSTRACT

The effects of chemical sympathectomy on moxibustion-induced changes in splenic natural killer (NK) cell cytotoxicity, T and B cell proliferation were studied. Direct moxibustion was applied to the unilateral Zusanli region. NK cell cytotoxicity was suppressed by moxibustion in both vehicle-treated rats and sympathectomized rats. T cell proliferation was not affected by moxibustion. B cell proliferation showed no significant change in vehicle-treated rats, but an increase was seen in sympathectomized rats treated with moxibustion. Sympathectomy alone induced an augmentation of NK cell cytotoxicity and a suppression of T cell proliferation. These results suggest that the sympathetic nervous system (SNS) has no significant role in the mechanism of moxibustion-induced immunomodulation.


Subject(s)
Moxibustion/methods , Neuroimmunomodulation/physiology , Sympathetic Nervous System/physiology , Animals , Cytotoxicity Tests, Immunologic/methods , Immunosuppression Therapy/methods , Killer Cells, Natural/immunology , Lymphocyte Activation , Male , Oxidopamine , Rats , Rats, Sprague-Dawley , Spleen/cytology , Spleen/immunology , Sympathectomy, Chemical , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...