Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 14(9)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37763940

ABSTRACT

The main key to the future transition to a hydrogen economy society is the development of hydrogen production and storage methods. Hydrogen energy is the energy produced via the reaction of hydrogen with oxygen, producing only water as a by-product. Hydrogen energy is considered one of the potential substitutes to overcome the growing global energy demand and global warming. A new study on CH4 conversion into hydrogen and hydrogen storage was performed using a magnesium-based alloy. MgH2-12Ni (with the composition of 88 wt% MgH2 + 12 wt% Ni) was prepared in a planetary ball mill by milling in a hydrogen atmosphere (reaction-involved milling). X-ray diffraction (XRD) analysis was performed on samples after reaction-involved milling and after reactions with CH4. The variation of adsorbed or desorbed gas over time was measured using a Sieverts'-type high-pressure apparatus. The microstructure of the powders was observed using a scanning transmission microscope (STEM) with energy-dispersive X-ray spectroscopy (EDS). The synthesized samples were also characterized using Fourier transform infrared (FT-IR) spectroscopy. The XRD pattern of MgH2-12Ni after the reaction with CH4 (12 bar pressure) at 773 K and decomposition under 1.0 bar at 773 K exhibited MgH2 and Mg2NiH4 phases. This shows that CH4 conversion took place, the hydrogen produced after CH4 conversion was then adsorbed onto the particles, and hydrides were formed during cooling to room temperature. Ni and Mg2Ni formed during heating to 773 K are believed to cause catalytic effects in CH4 conversion. The remaining CH4 after conversion is pumped out at room temperature.

2.
Opt Express ; 30(5): 7976-7986, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35299549

ABSTRACT

We propose an all-dielectric single-layer guided-mode resonance filter (GMRF) operating in the high-frequency terahertz (THz) region. For the fabrication of thin gratings to achieve strong resonance in the high-frequency region, the refractive index and absorption must be small, while the tensile strength must be high. Cyclic olefin copolymer (COC) films have a lower refractive index and absorption than polyethylene terephthalate (PET) films and a higher tensile yield strength than polytetrafluoroethylene (PTFE) films. Therefore, the COC film was found suitable to fabricate a GMRF operating in the high-frequency THz region. We fabricated COC-based single-layer GMRFs with a thickness of 50 µm and grating periods of 500, 400, 300, 200, and 100 µm; the resonance frequencies of the TE0,1 mode were 0.576, 0.712, 0.939, 1.329, and 2.759 THz, respectively. A shorter grating period caused a greater shift of the resonance to a higher frequency. In particular, the COC film enabled the fabrication of a 100-µm grating period with a ridge width of 32 µm and length of 2 mm, enabling the GMRF to operate up to 2.759 THz, which is very high frequency compared to the previous highest frequency of 0.7 THz. These results were in good agreement with a simulation using rigorous coupled-wave analysis.

3.
Small ; 18(15): e2104472, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35187776

ABSTRACT

Ferroelectric and piezoelectric polymers have attracted great attention from many research and engineering fields due to its mechanical robustness and flexibility as well as cost-effectiveness and easy processibility. Nevertheless, the electrical performance of piezoelectric polymers is very hard to reach that of piezoelectric ceramics basically and physically, even in the case of the representative ferroelectric polymer, poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)). Very recently, the concept for the morphotropic phase boundary (MPB), which has been exclusive in the field of high-performance piezoelectric ceramics, has been surprisingly confirmed in P(VDF-TrFE) piezoelectric copolymers by the groups. This study demonstrates the exceptional behaviors reminiscent of MPB and relaxor ferroelectrics in the feature of widely utilized electrospun P(VDF-TrFE) nanofibers. Consequently, an energy harvesting device that exceeds the performance limitation of the existing P(VDF-TrFE) materials is developed. Even the unpoled MPB-based P(VDF-TrFE) nanofibers show higher output than the electrically poled normal P(VDF-TrFE) nanofibers. This study is the first step toward the manufacture of a new generation of piezoelectric polymers with practical applications.

4.
Opt Express ; 29(23): 37917-37926, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34808855

ABSTRACT

All-dielectric binary gratings, with and without slab waveguides, are designed to generate polarization-independent guided-mode resonance filters (GMRFs) operating in the THz frequency region using the rigorous coupled-wave analysis (RCWA) method. The filling factor and thickness of the grating were adjusted to have equal resonance frequencies of transverse electric (TE)- and transverse magnetic (TM)-polarized THz beams. The single polarization-independent resonance for a binary grating without a slab waveguide was obtained at 0.459 THz with full width at half maximum (FWHM) values of 8.3 and 8.5 GHz for the TE and TM modes, respectively. Moreover, double-layered polarization-independent resonances for binary gratings with slab waveguides were obtained at 0.369 and 0.442 THz with very high Q-factors of up to 284. This is the first study to propose a polarization-independent GMRF with two resonant frequencies.

5.
Nat Commun ; 12(1): 6851, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34824264

ABSTRACT

The deflection of charged particles is an intuitive way to visualize an electromagnetic oscillation of coherent light. Here, we present a real-time ultrafast oscilloscope for time-frozen visualization of a terahertz (THz) optical wave by probing light-driven motion of relativistic electrons. We found the unique condition of subwavelength metal slit waveguide for preserving the distortion-free optical waveform during its propagation. Momentary stamping of the wave, transversely travelling inside a metal slit, on an ultrashort wide electron bunch enables the single-shot recording of an ultrafast optical waveform. As a proof-of-concept experiment, we successfully demonstrated to capture the entire field oscillation of a THz pulse with a sampling rate of 75.7 TS/s. Owing to the use of transversely-wide and longitudinally-short electron bunch and transversely travelling wave, the proposed "single-shot oscilloscope" will open up new avenue for developing the real-time petahertz (PHz) metrology.

6.
Rev Sci Instrum ; 92(2): 023302, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33648087

ABSTRACT

We present a proof of principle for onsite calibration of a radiochromic film (EBT3) using CR-39 as an absolute proton-counting detector and laser-accelerated protons as a calibration source. A special detector assembly composed of aluminum range filters, an EBT3 film, and a CR-39 detector is used to expose the EBT3 film with protons in an energy range of 3.65 MeV-5.85 MeV. In our design, the proton beam is divided into small beamlets and their projection images are taken on the EBT3 film and the CR-39 detector by maintaining a certain distance between the two detectors. Owing to the geometrical factor of the configuration and scattering inside the EBT3, the areal number density of protons was kept below the saturation level of the CR-39 detector. We also present a method to relate the number of protons detected on the CR-39 in a narrow energy range to protons with a broad energy spectrum that contribute to the dose deposited in the EBT3 film. The energy spectrum of protons emitted along the target normal direction is simultaneously measured using another CR-39 detector installed in a Thomson parabola spectrometer. The calibration curves for the EBT3 film were obtained in the optical density range of 0.01-0.25 for low dose values of 0.1 Gy-3.0 Gy. Our results are in good agreement with the calibrations of the EBT3 film that are traditionally carried out using conventional accelerators. The method presented here can be further extended for onsite calibration of radiochromic films of other types and for a higher range of dose values.

7.
Sci Rep ; 11(1): 1307, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33446732

ABSTRACT

In this paper, we propose a terahertz (THz) guided-mode resonance (GMR) notch filter made of a monolithic polyethylene terephthalate (PET) film, which has a monolayer grating structure. The proposed configuration shows both polarization-dependent and polarization-independent notch filter characteristics for the incident THz wave depending on the rotation angle of the second grating film. When the rotation angle is 0°, the filtering strength (transmittance) at resonance frequency changes from 0.4 (0.996) to 99.0% (0.010) according to the incident polarization. The transmittance continuously decreases with increasing rotation angle until 90°. When the rotation angle is 90°, the transmittance converges to 0.065 (± 0.015) independent of the incident wave polarization. When the incident polarization angle ranges from 90° to 180°, paradoxically, the transmittance through the two GMR grating films is greater than the transmittance through only the first GMR grating film due to the enhancement of the vertical component of the THz wave. These results agree well with a calculation using a polar coordinate system.

8.
Struct Dyn ; 7(3): 034301, 2020 May.
Article in English | MEDLINE | ID: mdl-32566696

ABSTRACT

The experimental observation of femtosecond dynamics in atoms and molecules by stroboscopic technologies utilizing x ray or electron flashes has attracted much attention and has rapidly developed. We propose a feasible ultrafast electron diffraction (UED) technology with high brightness and a sub-10 fs temporal resolution. We previously demonstrated a UED system with an overall temporal resolution of 31 fs by using an RF photoelectron gun and a 90° achromatic bending structure. This UED structure enabled a bunch duration of 25 fs and a low timing jitter of less than 10 fs while maintaining a high bunch charge of 0.6 pC. In this paper, we demonstrate a simple way to further compress the electron bunch duration to sub-10 fs based on installing an energy filter in the dispersion section of the achromatic bend. The energy filter removes the electrons belonging to nonlinear parts of the phase space. Through numerical simulations, we demonstrate that the electron bunches can be compressed, at the sample position, to a 6.2 fs (rms) duration for a 100 fC charge. This result suggests that the energy filtering approach is more viable and effective than complicated beam-shaping techniques that commonly handle the nonlinear distribution of the electron beam. Furthermore, a gas-filled hollow core fiber compressor and a Ti:sapphire amplifier are used to implement pump laser pulses of less than 5 fs (rms). Thus, we could present the full simulation results of a sub-10 fs UED, and we believe that it will be one of the technical prototypes to challenge the sub-fs time resolution.

9.
J Nanosci Nanotechnol ; 20(7): 4298-4302, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31968461

ABSTRACT

In this paper, we propose an I-shaped SiGe fin tunnel field-effect transistor (TFET) and use technology computer aided design (TCAD) simulations to verify the validity. Compared to conventional Fin TFET on the same footprint, a 27% increase in the effective channel width can be obtained with the proposed TFET. The proposed Fin TFET was confirmed to have 300% boosted on-current (I on), 25% reduced subthreshold swing (SS), and 52% lower off-current (I off) than conventional Fin TFET through TCAD simulation results. These performance improvements are attributed to increased effective channel width and enhanced gate controllability of the I-shaped fin structure. Furthermore, the fabrication process of forming an I-shaped SiGe fin is also presented using the SiGe wet etch. By optimizing the Ge condensation process, an I-shaped SiGe fin with a Ge ratio greater than 50% can be obtained.

10.
Micromachines (Basel) ; 10(11)2019 Nov 03.
Article in English | MEDLINE | ID: mdl-31684162

ABSTRACT

L-shaped tunnel field-effect transistor (TFET) provides higher on-current than a conventional TFET through band-to-band tunneling in the vertical direction of the channel. However, L-shaped TFET is disadvantageous for low-power applications because of increased off-current due to the large ambipolar current. In this paper, a stacked gate L-shaped TFET is proposed for suppression of ambipolar current. Stacked gates can be easily implemented using the structural features of L-shaped TFET, and on- and off-current can be controlled separately by using different gates located near the source and the drain, respectively. As a result, the suppression of ambipolarity is observed with respect to work function difference between two gates by simulation of the band-to-band tunneling generation. Furthermore, the proposed device suppresses ambipolar current better than existing ambipolar current suppression methods. In particular, low drain resistance is achieved as there is no need to reduce drain doping, which leads to a 7% enhanced on-current. Finally, we present the fabrication method for a stacked gate L-shaped TFET.

11.
J Nanosci Nanotechnol ; 19(10): 6061-6065, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31026908

ABSTRACT

In this paper, we propose a new type of nonvolatile memory (NVM) device based on a tunnel field-effect transistor (TFETs) with Ferroelectric HfO2 sidewall. By simply utilizing the ferroelectricity of orthorhombic HfO2 and conventional sidewall spacer technique, TFET can operate as a NVM device. The polarized charges in the ferroelectric HfO2 spacer induced by program/erase pulse modulate the tunneling barrier between the source and channel; thus, change the threshold voltage (Vt) of TFET. The proposed NVM TFET has lower subthreshold swing (SS) and higher on/off ratio than conventional NVM TFETs while maintaining equivalent program/erase efficiency. Further-more, we also investigate the optimal HfO2 sidewall formation conditions to achieve higher NVM performances.

12.
J Nanosci Nanotechnol ; 19(10): 6095-6098, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31026915

ABSTRACT

Ferroelectric tunnel field effect transistor (Fe-TFET) having improved DC performance in comparison to the conventional TFET (c-TFET) is proposed and investigated through the technology computer-aided design (TCAD) simulation. By inserting ferroelectric material into the gate insulator of TFET, enhanced on-current (Ion) is obtained. It is attributed to the polarization characteristic of the ferroelectric materials which brings the capacitance boosting effect. Through the TCAD simulation, the characteristics of the ferroelectric material for the optimal performance conditions are also studied.

13.
J Nanosci Nanotechnol ; 19(10): 6808-6811, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31027034

ABSTRACT

In this paper, it is shown that MOL capacitance reduction is one of the major performance boosting knobs for the tunneling field effect transistor (TFET) used for logic application. Low driving current is the weakness of TFET in terms of switching speed, however it can gain advantage fully from reducing MOL capacitance owing to negligible impact of MOL resistance degradation. We have proposed partial contact etching and gate height lowering to reduce MOL capacitance. As a result, 7.3% of delay improvement and 9.0% of reduced energy consumption is achieved with optimized MOL structure.

15.
J Nanosci Nanotechnol ; 18(9): 5882-5886, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29677710

ABSTRACT

In this paper, the volatile and nonvolatile characteristics of asymmetric dual-gate thyristor random access memory (TRAM) are investigated using the technology of a computer-aided design (TCAD) simulation. Owing to the use of two independent gates having different gate dielectric layers, volatile and nonvolatile memory functions can be realized in a single device. The first gate with a silicon oxide layer controls the one-transistor dynamic random access memory (1T-DRAM) characteristics of the device. From the simulation results, a rapid write speed (<8 ns) and a large on-off current ratio (>107) can be achieved. The second gate, whose dielectric material is composed of oxide/nitride/oxide (O/N/O) layers, is used to implement the nonvolatile property by trapping charges in the nitride layer. In addition, this offers an advantage when processing the 3D-stack memory application, as the device has a vertical channel structure with polycrystalline silicon.

16.
J Nanosci Nanotechnol ; 18(9): 5919-5924, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29677717

ABSTRACT

In this study, we investigate a one-transistor (1T) dynamic random access memory (DRAM) cell based on a gated-thyristor device utilizing voltage-driven bistability to enable high-speed operations. The structural feature of the surrounding gate using a sidewall provides high scalability with regard to constructing an array architecture of the proposed devices. In addition, the operation mechanism, I-V characteristics, DRAM operations, and bias dependence are analyzed using a commercial device simulator. Unlike conventional 1T DRAM cells utilizing the floating body effect, excess carriers which are required to be stored to make two different states are not generated but injected from the n+ cathode region, giving the device high-speed operation capabilities. The findings here indicate that the proposed DRAM cell offers distinct advantages in terms of scalability and high-speed operations.

17.
Rev Sci Instrum ; 88(11): 113306, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29195384

ABSTRACT

We describe a compact THz-pump and X-ray-probe beamline, based on an electron linac, for ultrafast time-resolved diffraction applications. Two high-energy electron (γ > 50) bunches, 5 ns apart, impinge upon a single-foil or multifoil radiator and generate THz radiation and X-rays simultaneously. The THz pulse from the first bunch is synchronized to the X-ray beam of the second bunch by using an adjustable optical delay of a THz pulse. The peak power of THz radiation from the multifoil radiator is estimated to be 0.14 GW for a 200 pC well-optimized electron bunch. GEANT4 simulations show that a carbon foil with a thickness of 0.5-1.0 mm has the highest yield of 10-20 keV hard X-rays for a 25 MeV beam, which is approximately 103 photons/(keV pC-electrons) within a few degrees of the polar angle. A carbon multifoil radiator with 35 foils (25 µm thick each) can generate close to 103 hard X-rays/(keV pC-electrons) within a 2° acceptance angle. With 200 pC charge and a 100 Hz repetition rate, we can generate 107 X-rays per 1 keV energy bin per second or 105 X-rays per 1 keV energy bin per pulse. The longitudinal time profile of an X-ray pulse ranges from 400 to 600 fs depending on the acceptance angle. The broadening of the time duration of an X-ray pulse is observed owing to its diverging effect. A double-crystal monochromator will be used to select and transport the desired X-rays to the sample. The heating of the radiators by an electron beam is negligible because of the low beam current.

18.
Radiat Prot Dosimetry ; 175(3): 297-303, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-27885084

ABSTRACT

A new treatment facility for heavy ion therapy since 2010 was constructed. In the broad beam, a range shifter, ridge filter and multi leaf collimator (MLC) for the generation of the spread-out Bragg peak is used. In this case, secondary neutrons produced by the interactions of the ion field with beam-modifying devices (e.g. double-scattering system, beam shaping collimators and range compensators) are very important for patient safety. Therefore, these components must be carefully examined in the context of secondary neutron yield and associated secondary cancer risk. In this article, Monte Carlo simulation has been carried out with the FLUktuierende KAskade particle transport code, the fluence and distribution of neutron generation and the neutron dose equivalent from the broad beam components are compared using carbon and proton beams. As a result, it is confirmed that the yield of neutron production using a carbon beam from all components of the broad beam was higher than using a proton beam. The ambient dose by neutrons per heavy ion and proton ion from the MLC surface was 0.12-0.18 and 0.0067-0.0087 pSv, respectively, which shows that heavy ions generate more neutrons than protons. However, ambient dose per treatment 2 Gy, which means physical dose during treatment by ion beam, is higher than carbon beam because proton therapy needs more beam flux to make 2-Gy prescription dose. Therefore, the neutron production from the MLC, which is closed to the patient, is a very important parameter for patient safety.


Subject(s)
Monte Carlo Method , Neutrons , Radiotherapy Dosage , Humans , Protons , Radiotherapy, Conformal
19.
Korean J Fam Med ; 35(2): 65-73, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24724001

ABSTRACT

BACKGROUND: This study aimed to investigate the relationship between leisure time physical activities (LTPA) and metabolic syndrome (MS). METHODS: Five thousand seven hundred and thirty two adults 40 years old or older were enrolled in the study from April 2009 to December 2010. National Cholesterol Education Program's Adult Treatment Panel III was used for the criteria of MS, and Minnesota Leisure Time Physical Activity Questionnaire was used to measure LTPA. After adjusted covariates (age, hypertension, smoking, drinking, education level, household income level, work time physical activities, and menopause for females), the relationship between LTPA and MS was analyzed using logistic regression analysis. RESULTS: The prevalence of MS was 22.8% in men, and 14.1% in women. Average LTPA was 1,498 kcal/wk in men, and 1,308 kcal/wk in women. After adjustment for covariates, the odds ratios of middle and low LTPA compared with high LTPA were 1.06 (0.87-1.34), 1.54 (1.08-1.75), for women, this same association was not seen in men. The prevalence of MS was 22.8% in men and 14.1% in women, and their LTPA burned 1,498 and 1,308 kcal/wk, respectively. When the odds ratio of MS for the high LTPA group was set at 1.0, the odds ratio of MS was 1.06 (0.87-1.34) in the middle LTPA group and 1.54 (1.08-1.75) in the low LTPA group in women, which showed that the MS risk increased when the LTPA was lower. This same association was not seen in men. CONCLUSION: LTPA was independently associated with metabolic syndrome, but only for women.

20.
Rev Sci Instrum ; 83(12): 123504, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23277984

ABSTRACT

A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 10(5) n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He(4) nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T(3).

SELECTION OF CITATIONS
SEARCH DETAIL
...