Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(2)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38398972

ABSTRACT

Laser-based additive manufacturing processes, particularly direct energy deposition (DED), have gained prominence for fabricating complex, functionally graded, or customized parts. DED employs a high-powered heat source to melt metallic powder or wire, enabling precise control of grain structures and the production of high-strength objects. However, common defects, such as a lack of fusion and pores between layers or beads, can compromise the mechanical properties of the printed components. This study focuses on investigating the recurrent causes of pore defects in the powder-fed DED process, with a specific emphasis on the influence of oxidized metal powders. This research explores the impact of intentionally oxidizing metal powders of hot work tool steel H13 by exposing them to regulated humidity and temperature conditions. Scanning electron microscopy images and energy-dispersive X-ray spectroscopy results demonstrate the clumping of powders and the deposition of iron oxides in the oxidized powders at elevated temperatures (70 °C for 72 h). Multi-layered depositions of the oxidized H13 powders on STD61 substrate do not show significant differences in cross sections among specimens, suggesting that oxidation does not visibly form large pores. However, fine pores, detected through CT scanning, are observed in depositions of oxidized powders at higher temperatures. These fine pores, typically less than 250 µm in diameter, are irregularly distributed throughout the deposition, indicating a potential degradation in mechanical properties. The findings highlight the need for careful consideration of oxidation effects in optimizing process parameters for enhanced additive manufacturing quality.

2.
Micromachines (Basel) ; 14(4)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37421105

ABSTRACT

High thermal conductivity steel (HTCS-150) is deposited onto non-heat-treated AISI H13 (N-H13) via powder-fed direct energy deposition (DED) based on the response surface methodology (RSM) to enhance the mechanical properties and thermal conductivity of N-H13, which is generally used as a hot-work tool steel. The main process parameters of the powder-fed DED are priorly optimized to minimize defects in the deposited regions and, therefore, to obtain homogeneous material properties. The deposited HTCS-150 is comprehensively evaluated through hardness, tensile, and wear tests at the different temperatures of 25, 200, 400, 600, and 800 °C. Compared to conventionally heat-treated (quenched and tempered) H13 (HT-H13), the hardness of the additively manufactured HTCS-150 slightly increases at 25 °C, whereas it does not show any significant difference above 200 °C. However, the HTCS-150 deposited on N-H13 shows a lower ultimate tensile strength and elongation than HT-H13 at all tested temperatures, and the deposition of the HTCS-150 on N-H13 enhances the ultimate tensile strength of N-H13. While the HTCS-150 does not show a significant difference in the wear rate below 400 °C compared to HT-H13, it shows a lower wear rate above 600 °C. The HTCS-150 reveals a higher thermal conductivity than the HT-H13 below 600 °C, whereas the behavior is reversed at 800 °C. The results suggest that the HTCS-150 additively manufactured via powder-fed direct energy deposition can enhance the mechanical and thermal properties of N-H13, including hardness, tensile strength, wear resistance, and thermal conductivity in a wide range of temperatures, often superior to those of HT-H13.

3.
Curr Med Chem ; 24(21): 2294-2311, 2017.
Article in English | MEDLINE | ID: mdl-28245763

ABSTRACT

Hepsin is a type II transmembrane serine protease (TTSP) that plays a crucial role in cell growth and development. Hepsin is highly expressed in prostate cancer (PCa) and associated with its progression and metastasis. Therefore, it has been considered as an attractive biomarker of PCa. Recently, low molecular weight inhibitors targeting hepsin have been developed. Based on the key chemical scaffold, they can be classified into four classes: Indolecarboxamidines, benzamidines, peptide-based analogs, and 2,3-dihydro- 1H-perimidines. In this review, we discuss design strategy, structure-activity relationship (SAR), and binding mode of the four classes of hepsin inhibitors.


Subject(s)
Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/pharmacology , Drug Design , Humans , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/chemistry , Structure-Activity Relationship
4.
Rev Sci Instrum ; 86(5): 055108, 2015 May.
Article in English | MEDLINE | ID: mdl-26026559

ABSTRACT

For high-quality flexible devices from printing processes based on Roll-to-Roll (R2R) systems, overlay alignment during the patterning of each functional layer poses a major challenge. The reason is because flexible substrates have a relatively low stiffness compared with rigid substrates, and they are easily deformed during web handling in the R2R system. To achieve a high overlay accuracy for a flexible substrate, it is important not only to develop web handling modules (such as web guiding, tension control, winding, and unwinding) and a precise printing tool but also to control the synchronization of each unit in the total system. A R2R web handling system and reverse offset printing process were developed in this work, and an overlay between the 1st and 2nd layers of ±5µm on a 500 mm-wide film was achieved at a σ level of 2.4 and 2.8 (x and y directions, respectively) in a continuous R2R printing process. This paper presents the components and mechanisms used in reverse offset printing based on a R2R system and the printing results including positioning accuracy and overlay alignment accuracy.

5.
J Pharmacol Sci ; 109(4): 486-95, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19372631

ABSTRACT

The generally accepted hypothesis for the pathogenesis of alcoholic liver disease (ALD) is the two-hit model, which proposes that fat accumulation in the liver increases the sensitivity of the liver to a second hit that leads to inflammatory liver cell damage. In this study we evaluated the effects of Magnolia officinalis (MO), which contains honokiol and magnolol as the primary pharmacological components, to eradicate fatty liver in rats fed an ethanol diet. In vitro studies showed that MO was able to protect RAW 264.7 cells from ethanol-induced production of tumor necrosis factor-alpha, reactive oxygen species, and superoxide anion radicals; the activation of NADPH oxidase; and subsequent cell death. We also investigated the therapeutic effects of MO on alcoholic fatty liver in Lieber-DeCarli ethanol diet-fed rats. MO treatment of the rats for the last 2 weeks of ethanol feeding completely reversed all the serum, hepatic parameters, and fatty liver changes. The increased maturation of sterol regulatory element-binding protein-1c in the liver by ethanol treatment was completely inhibited by treatment with MO. Therefore, MO may be a promising candidate for development as a therapeutic agent for ALD.


Subject(s)
Fatty Liver, Alcoholic/drug therapy , Magnolia/chemistry , Sterol Regulatory Element Binding Protein 1/antagonists & inhibitors , Sterol Regulatory Element Binding Protein 1/biosynthesis , Animals , Blotting, Western , Cell Survival/drug effects , Central Nervous System Depressants/toxicity , Cytokines/biosynthesis , Ethanol/toxicity , Fatty Liver, Alcoholic/metabolism , Fatty Liver, Alcoholic/pathology , Glutathione/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , Plant Bark/chemistry , Plant Extracts/pharmacology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Reverse Transcriptase Polymerase Chain Reaction , S-Adenosylmethionine/metabolism , Superoxides/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...