Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 4359, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29531352

ABSTRACT

Functional and genomic heterogeneity of individual cells are central players in a broad spectrum of normal and disease states. Our knowledge about the role of cellular heterogeneity in tissue and organism function remains limited due to analytical challenges one encounters when performing single cell studies in the context of cell-cell interactions. Information based on bulk samples represents ensemble averages over populations of cells, while data generated from isolated single cells do not account for intercellular interactions. We describe a new technology and demonstrate two important advantages over existing technologies: first, it enables multiparameter energy metabolism profiling of small cell populations (<100 cells)-a sample size that is at least an order of magnitude smaller than other, commercially available technologies; second, it can perform simultaneous real-time measurements of oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and mitochondrial membrane potential (MMP)-a capability not offered by any other commercially available technology. Our results revealed substantial diversity in response kinetics of the three analytes in dysplastic human epithelial esophageal cells and suggest the existence of varying cellular energy metabolism profiles and their kinetics among small populations of cells. The technology represents a powerful analytical tool for multiparameter studies of cellular function.


Subject(s)
Biomedical Technology/methods , Cell Communication , Energy Metabolism , Single-Cell Analysis , Animals , Cell Line , Epithelial Cells/physiology , Equipment Design , Esophagus/cytology , Humans , Membrane Potential, Mitochondrial , Oxygen Consumption , Sample Size
2.
PLoS One ; 12(4): e0176079, 2017.
Article in English | MEDLINE | ID: mdl-28445488

ABSTRACT

Intercellular interactions play a central role at the tissue and whole organism level modulating key cellular functions in normal and disease states. Studies of cell-cell communications are challenging due to ensemble averaging effects brought about by intrinsic heterogeneity in cellular function which requires such studies to be conducted with small populations of cells. Most of the current methods for producing and studying such small cell populations are complex to implement and require skilled personnel limiting their widespread utility in biomedical research labs. We present a simple and rapid method to produce small populations with varying size of epithelial cells (10-50 cells/population) with high-throughput (~ 1 population/second) on flat surfaces via patterning of extracellular matrix (ECM) proteins and random seeding of cells. We demonstrate that despite inherent limitations of non-contact, drop-on-demand piezoelectric inkjet printing for protein patterning, varying mixtures of ECM proteins can be deposited with high reproducibility and level of control on glass substrates using a set of dynamically adjustable optimized deposition parameters. We demonstrate high consistency for the number of cells per population (~1 cell standard error of mean), the population's size (~0.2 coefficient of variation) and shape, as well as accurate spatial placement of and distance between colonies of a panel of metaplastic and dysplastic esophageal epithelial cells with differing adhesion and motility characteristics. The number of cells per colony, colony size and shape can be varied by dynamically varying the amount of ECM proteins deposited per spatial location and the number of spatial locations on the substrate. The method is applicable to a broad range of biological and biomedical studies including cell-cell communications, cellular microenvironment, migration, and stimulus response.


Subject(s)
Epithelial Cells/metabolism , Extracellular Matrix Proteins/metabolism , Cell Adhesion/physiology , Cell Shape , Cell Size , Cell Survival , Cells, Cultured , Epithelial Cells/cytology , Humans , Microscopy, Fluorescence , Substrate Specificity
3.
Sci Rep ; 7: 45399, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28349963

ABSTRACT

Driven by an increasing number of studies demonstrating its relevance to a broad variety of disease states, the bioenergy production phenotype has been widely characterized at the bulk sample level. Its cell-to-cell variability, a key player associated with cancer cell survival and recurrence, however, remains poorly understood due to ensemble averaging of the current approaches. We present a technology platform for performing oxygen consumption and extracellular acidification measurements of several hundreds to 1,000 individual cells per assay, while offering simultaneous analysis of cellular communication effects on the energy production phenotype. The platform comprises two major components: a tandem optical sensor for combined oxygen and pH detection, and a microwell device for isolation and analysis of single and few cells in hermetically sealed sub-nanoliter chambers. Our approach revealed subpopulations of cells with aberrant energy production profiles and enables determination of cellular response variability to electron transfer chain inhibitors and ion uncouplers.


Subject(s)
Bioreactors , Cell Communication/physiology , Energy Metabolism/physiology , Oxygen Consumption/physiology , Cell Line, Tumor , Cell Survival/physiology , Humans , Oxidative Phosphorylation , Oxygen/metabolism
4.
J Biomed Opt ; 17(3): 037008, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22502580

ABSTRACT

Intercellular heterogeneity is a key factor in a variety of core cellular processes including proliferation, stimulus response, carcinogenesis, and drug resistance. However, cell-to-cell variability studies at the single-cell level have been hampered by the lack of enabling experimental techniques. We present a measurement platform that features the capability to quantify oxygen consumption rates of individual, non-interacting and interacting cells under normoxic and hypoxic conditions. It is based on real-time concentration measurements of metabolites of interest by means of extracellular optical sensors in cell-isolating microwells of subnanoliter volume. We present the results of a series of measurements of oxygen consumption rates (OCRs) of individual non-interacting and interacting human epithelial cells. We measured the effects of cell-to-cell interactions by using the system's capability to isolate two and three cells in a single well. The major advantages of the approach are: 1. ratiometric, intensity-based characterization of the metabolic phenotype at the single-cell level, 2. minimal invasiveness due to the distant positioning of sensors, and 3. ability to study the effects of cell-cell interactions on cellular respiration rates.


Subject(s)
Cell Communication/physiology , Oxygen Consumption/physiology , Phenotype , Single-Cell Analysis/instrumentation , Single-Cell Analysis/methods , Cell Culture Techniques/instrumentation , Cell Line, Transformed , Cell Respiration/physiology , Humans , Linear Models , Microfluidic Analytical Techniques/instrumentation , Microscopy/instrumentation , Microscopy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...