Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(10)2022 May 15.
Article in English | MEDLINE | ID: mdl-35631900

ABSTRACT

Microcellular injection molding technology (MuCell®) using supercritical fluid (SCF) as a foaming agent offers many advantages, such as material and energy savings, low cycle time, cost-effectiveness, and the dimensional stability of products. MuCell® has attracted great attention for applications in the automotive, packaging, sporting goods, and electrical parts industries. In view of the environmental issues, the shoe industry, particularly for midsole parts, is also seriously considering using physical foaming to replace the chemical foaming process. MuCell® is thus becoming one potential processing candidate. Thermoplastic polyurethane (TPU) is a common material for molding the outsole of shoes because of its outstanding properties such as hardness, abrasion resistance, and elasticity. Although many shoe manufacturers have tried applying Mucell® processes to TPU midsoles, the main problem remaining to be overcome is the non-uniformity of the foaming cell size in the molded midsole. In this study, the MuCell® process combined with gas counter pressure (GCP) technology and dynamic mold temperature control (DMTC) were carried out for TPU molding. The influence of various molding parameters including SCF dosage, injection speed, mold temperature, gas counter pressure, and gas holding time on the foaming cell size and the associated size distribution under a target weight reduction of 60% were investigated in detail. Compared with the conventional MuCell® process, the implementation of GCP technology or DMTC led to significant improvement in foaming cell size reduction and size uniformity. Further improvement could be achieved by the simultaneous combination of GCP with DMT, and the resulting cell density was about fifty times higher. The successful possibility for the microcellular injection molding of TPU shoe midsoles is greatly enhanced.

2.
ACS Appl Mater Interfaces ; 12(4): 5008-5016, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31888331

ABSTRACT

Hybrid organic-inorganic perovskites have attracted great attention as the next generation materials for photovoltaic and light-emitting devices. However, their environment instability issue remains as the largest challenge for practical applications. Recently emerging two-dimensional (2D) perovskites with Ruddlesden-Popper structures are found to greatly improve the stability and aging problems. Furthermore, strong confinement of excitons in these natural quantum-well structures results in the distinct and narrow light emission in the visible spectral range, enabling the development of spectrally tunable light sources. Besides the strong quasi-monochromatic emission, some 2D perovskites composed of the specific organic cations and inorganic layer structures emit a pronounced broadband emission. Herein, we report the light-emitting properties and the degradation of low-dimensional perovskites consisting of the three shortest alkylammonium spacers, mono-ethylammonium (EA), n-propylammonium (PA), and n-butylammonium (BA). While (BA)2PbI4 is known to form well-oriented 2D thin films consisting of layers of corner-sharing PbI6 octahedra separated by a bilayer of BA cations, EA with shorter alkyl chains tends to form other types of lower-dimensional structures. Nevertheless, optical absorption edges of as-prepared fresh EAPbI3, (PA)2PbI4, and (BA)2PbI4 are obviously blue-shifted to 2.4-2.5 eV compared to their 3D counterpart, methylammonium lead iodide (MAPbI3) perovskite, and they all emit narrow excitonic photoluminescence. Furthermore, by carefully optimizing deposition conditions, we have achieved a predominantly 2D structure for (PA)2PbI4. However, unlike (BA)2PbI4, upon exposure to ambient environment, (PA)2PbI4 readily transforms to a different crystal structure, exhibiting a prominently broadband light from ∼500 to 800 nm and a gradual increase in intensity as structural transformation proceeds.

3.
SLAS Technol ; 23(2): 172-178, 2018 04.
Article in English | MEDLINE | ID: mdl-29241020

ABSTRACT

A blood-typing assay is a critical test to ensure the serological compatibility of a donor and an intended recipient prior to a blood transfusion. This article presents a lab-on-disc blood-typing system to conduct a total of eight assays for a patient, including forward-typing tests, reverse-typing tests, and irregular-antibody tests. These assays are carried out in a microfluidic disc simultaneously. A blood-typing apparatus was designed to automatically manipulate the disc. The blood type can be determined by integrating the results of red blood cell (RBC) agglutination in the microchannels. The experimental results of our current 40 blood samples show that the results agree with those examined in the hospital. The accuracy reaches 97.5%.


Subject(s)
Automation, Laboratory/instrumentation , Automation, Laboratory/methods , Blood Grouping and Crossmatching/instrumentation , Blood Grouping and Crossmatching/methods , Lab-On-A-Chip Devices , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...