Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 328: 138534, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37004821

ABSTRACT

Nanomaterials frequently draw a lot of interest in a variety of disciplines, including electrochemistry. Developing a reliable electrode modifier for the selective electrochemical detection of the analgesic bioflavonoid i.e., Rutinoside (RS) is a great challenge. Here in, we have explored the supercritical-CO2 (SC-CO2) mediated synthesis of bismuth oxysulfide (SC-BiOS) and reported it as a robust electrode modifier for the detection of RS. For a comparison study, the same preparation procedure was carried out in the conventional approach (C-BiS). The morphology, crystallography, optical, and elemental contribution analyses were characterized to understand the paradigm shift in the physicochemical properties between SC-BiOS and C-BiS. The results exposed the C-BiS had a nano-rod-like structure with a crystallite size of 11.57 nm; whereas the SC-BiOS had a nano-petal-like structure with a crystallite size of 9.03 nm. The B2g mode in the optical analysis confirms the formation of bismuth oxysulfide by the SC-CO2 method with the Pmnn space group. As an electrode modifier, the SC-BiOS achieved a higher effective surface area (0.074 cm2), higher electron transfer kinetics (0.13 cm s-1), and lower charge transfer resistance (403 Ω) than C-BiS. Further, it provided a wide linear range of 0.1-610.5 µM L-1 with a low detection and quantification limit of 9 and 30nM L-1 and an appreciable sensitivity of 0.706 µA µM-1 cm-2. The selectivity, repeatability, and real-time application towards the environmental water sample with a recovery of 98.87% were anticipated for the SC-BiOS. This SC-BiOS unlocks a fresh avenue to construct a design for the family of electrode modifiers utilized in electrochemical applications.


Subject(s)
Carbon Dioxide , Nanotubes , Carbon Dioxide/chemistry , Bismuth , Electron Transport , Electrodes
2.
Environ Sci Pollut Res Int ; 30(33): 79744-79757, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36740620

ABSTRACT

Clioquinol (CLQ) is one of the most toxic halogenated neurodegenerative drugs, and its synaptic plasticity effect directly affects human health and the environment. Cupric oxide (CuO) is an ideal electrocatalyst owing to its earth-abundance, non-toxic nature, and cost-effectiveness. Since phenolate oxygen and pyridine nitrogen in CLQ act as an electron donor and pave the way for detection with Cu2+ ions in the CuO. Designing the architecture of CuO with a multi-walled carbon nanotube (MWCNT) is a sensible strategy to improve the electrochemical activity of the developed sensor. Inspired by the bio-synthesis and green processing, we have demonstrated the in-situ synthesis of CuO nanosphere-decorated MWCNT by Chenopodium album leaf extract through a sonochemical approach and explored its electrochemical sensing performance toward CLQ. The physical comprehensive characterization of prepared nanocomposite was investigated by various microscopic and spectroscopic techniques. For comparison studies, the CuO nanosphere was prepared by the same preparation process without MWCNT. Based on the physical characterization outcomes, the morphological nature of CuO was observed to be a sphere-like structure, which was decorated on the MWCNT with an average crystallite size of 16 nm (± 1 nm). Based on the electrochemical studies, the fabricated nanocomposite exhibits a wider linear range of 0.025-1375 µM, with a minimum detection limit of 4.59 nM L-1 toward CLQ. The viability examination on the biological matrix obtained considerable spike recoveries.


Subject(s)
Chenopodium album , Nanospheres , Humans , Copper/chemistry , Phenols , Electrochemical Techniques/methods , Electrodes
3.
Chemosphere ; 313: 137626, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36566795

ABSTRACT

The unprocessed dumping of aluminium wastes in the landscape leads to generation of heat and toxic gases, which are detrimental to the ecosystem. Motivated by the waste-to-wealth notion, we demonstrated the recovery of aluminium oxide nanoparticles (Al2O3NPs) from domestic aluminium wastes via a sonochemical approach and synthesis of nickel/aluminium oxide (Ni/Al2O3) coating via ultrasonic-coupled supercritical carbon dioxide (US-SC-CO2) electrodeposition method for higher corrosion resistance performance. The physical characterization and material confirmation of prepared films were examined by microscopic and various spectroscopic techniques. The electrochemical corrosion resistance studies were explored via potentiodynamic polarization and electrochemical impedance spectroscopy techniques. Based on the results, the US-SC-CO2 strategy exposed an improved distribution of Al2O3 NPs assimilation in Ni matrix, higher corrosion resistance, and microhardness. The integration of ultrasonic irradiation into the SC-CO2 process promises an enhanced coating quality. Thereby, the novel US-SC-CO2 approach for Ni/Al2O3 synthesis is expected to achieve a sustainable green impact in real-world applications.


Subject(s)
Aluminum , Carbon Dioxide , Carbon Dioxide/chemistry , Corrosion , Electroplating , Ultrasonics , Ecosystem , Aluminum Oxide
4.
Food Chem ; 396: 133722, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35870247

ABSTRACT

Herein we report (i) designing of porous 3D flower-like neodymium molybdate nanosheets (pf-NdM NSs) and (ii) attaining reasonable selectivity towards methyl parathion (MP, organophosphate pesticide) in the presence of structurally comparable interferents. Herein the pf-NdM NSs as a catalyst for electrochemical detection of MP in food samples is reported for the first time. Because of porous morphology, and high surface area, the proposed catalyst offers a high electrocatalytic activity toward MP reduction. As a result, a low detection limit (5.7 nM), wide linear range (0.5 - 300 µM), and good sensitivity (1.88 µA µM-1 cm-2), with decent selectivity were achieved. Further, the real sample analysis in tomato juice, and paddy grains, yielded good recovery results, demonstrating the practicability of the proposed sensor. Overall, our study presents a method for designing a novel-nanostructured material for trace-level detection of pesticides that is simple to fabricate, and also delivers a good performance.


Subject(s)
Nanostructures , Pesticides , Electrochemical Techniques/methods , Electrodes , Molybdenum , Nanostructures/chemistry , Neodymium , Organophosphorus Compounds/analysis , Pesticides/analysis , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...