Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 22(11)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072531

ABSTRACT

Cytoplasm injection cloning technology (CICT) is an efficient technique for evaluating the developmental potential of cloned embryos. In this study, we investigated the effects of donor cell type on the developmental potential and quality of cloned bovine embryos. Adult fibroblasts (AFs) and embryonic cells (ECs) were used as donor cells to clone bovine embryos using CICT. We initially used AF cells to develop cloned embryos and then cultured the cloned day-8 blastocysts for 10 days to obtain ECs as donor cells for second embryo cloning. We found that the bovine blastocysts cloned using AF cells had significantly reduced developmental rates, embryo quality, and ratios of inner cell mass (ICM) to the total number of cells compared to those using ECs as donor cells. Furthermore, there were significant differences in the DNA methyltransferase-, histone deacetylation-, apoptosis-, and development-related genes at the blastocyst stage in embryos cloned from AFs compared to those in embryos cloned from ECs. Our results suggest that using ECs as donor cells for nuclear transfer enhances the quantity and quality of cloned embryos. However, further investigation is required in terms of determining pregnancy rates and developing cloned embryos from different donor cell types.


Subject(s)
Cellular Reprogramming Techniques , Cloning, Organism , Embryo, Mammalian , Embryonic Development , Nuclear Transfer Techniques , Animals , Apoptosis/genetics , Biomarkers , Cattle , Cloning, Organism/methods , DNA Methylation , Embryo Implantation , Epigenesis, Genetic , Female , Fibroblasts , Gene Expression , Histones/metabolism , Pregnancy , Sensitivity and Specificity , Tissue Donors
2.
Int J Mol Sci ; 22(10)2021 May 18.
Article in English | MEDLINE | ID: mdl-34070219

ABSTRACT

Age-associated decline in oocyte quality is one of the dominant factors of low fertility. Aging alters several key processes, such as telomere lengthening, cell senescence, and cellular longevity of granulosa cells surrounding oocyte. To investigate the age-dependent molecular changes, we examined the expression, localization, and correlation of telomerase reverse transcriptase (TERT) and ß-Klotho (KLB) in bovine granulosa cells, oocytes, and early embryos during the aging process. Herein, cumulus-oocyte complexes (COCs) obtained from aged cows (>120 months) via ovum pick-up (OPU) showed reduced expression of ß-Klotho and its co-receptor fibroblast growth factor receptor 1 (FGFR1). TERT plasmid injection into pronuclear zygotes not only markedly enhanced day-8 blastocysts' development competence (39.1 ± 0.8%) compared to the control (31.1 ± 0.5%) and D-galactose (17.9 ± 1.0%) treatment groups but also enhanced KLB and FGFR1 expression. In addition, plasmid-injected zygotes displayed a considerable enhancement in blastocyst quality and implantation potential. Cycloastragenol (CAG), an extract of saponins, stimulates telomerase enzymes and enhances KLB expression and alleviates age-related deterioration in cultured primary bovine granulosa cells. In conclusion, telomerase activation or constitutive expression will increase KLB expression and activate the FGFR1/ß-Klotho pathway in bovine granulosa cells and early embryos, inhibiting age-related malfunctioning.


Subject(s)
Blastocyst/metabolism , Cattle/embryology , Cattle/genetics , Membrane Proteins/genetics , Pregnancy, Animal/genetics , Telomerase/genetics , Aging/genetics , Aging/physiology , Animals , Cattle/physiology , Cells, Cultured , Cleavage Stage, Ovum/metabolism , Embryo Implantation/genetics , Embryo Implantation/physiology , Embryonic Development/genetics , Embryonic Development/physiology , Female , Gene Expression , Granulosa Cells/metabolism , Membrane Proteins/metabolism , Oocytes/growth & development , Oocytes/metabolism , Pregnancy , Pregnancy, Animal/physiology , Reactive Oxygen Species/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics
3.
Int J Mol Sci ; 22(4)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673357

ABSTRACT

The Wnt/ß-catenin signaling pathway plays a crucial role in early embryonic development. Wnt/ß-catenin signaling is a major regulator of cell proliferation and keeps embryonic stem cells (ESCs) in the pluripotent state. Dysregulation of Wnt signaling in the early developmental stages causes several hereditary diseases that lead to embryonic abnormalities. Several other signaling molecules are directly or indirectly activated in response to Wnt/ß-catenin stimulation. The crosstalk of these signaling factors either synergizes or opposes the transcriptional activation of ß-catenin/Tcf4-mediated target gene expression. Recently, the crosstalk between the peroxisome proliferator-activated receptor delta (PPARδ), which belongs to the steroid superfamily, and Wnt/ß-catenin signaling has been reported to take place during several aspects of embryonic development. However, numerous questions need to be answered regarding the function and regulation of PPARδ in coordination with the Wnt/ß-catenin pathway. Here, we have summarized the functional activation of the PPARδ in co-ordination with the Wnt/ß-catenin pathway during the regulation of several aspects of embryonic development, stem cell regulation and maintenance, as well as during the progression of several metabolic disorders.


Subject(s)
Cell Differentiation , Embryonic Development , Human Embryonic Stem Cells/metabolism , Metabolic Diseases/embryology , PPAR delta/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism , Animals , Human Embryonic Stem Cells/pathology , Humans , Metabolic Diseases/pathology , Transcription Factor 4/metabolism
4.
Theriogenology ; 161: 301-312, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33373933

ABSTRACT

Kisspeptin (Kp), a multifunctional neuropeptide critical for initiating puberty and regulating ovulation, was reported to be expressed in mammalian ovaries. Fibronectin (FN), a major secretory product of granulosa cells, provided the extracellular environment for the cumulus cells during maturation. In the current study, we aimed to investigate the potential interplay between FN and Kp in bovine preantral follicles in the context of follicular development and quality. The results showed that Kp significantly reduced the follicular diameters after 14 days in culture, and this was prevented by the addition of FN. Follicles treated with Kp in the presence of FN showed lower levels of apoptotic cells compared to the Kp-treated group. The immunofluorescence analysis showed high levels of cyclooxygenase-2 (COX2), nuclear factor kappa B (NF-κB), and caspase 3, and low levels of sirtuin 1 (Sirt1) and Poly ADP-Ribose Polymerase 1 (PARP1) in the Kp-treated group compared to the control and FN-Kp co-treated groups. The protein expression levels of phosphoinositide 3 kinase (PI3K) increased significantly in the FN and FN-Kp combination treatment groups. Finally, we examined the signal pathway affecting the follicular development after Kp treatment. We detected a significant decrease in the mRNA levels of B-cell lymphoma 2 (BCL2), Sirt1, and PI3K, but the mRNA levels of NF-κB, Caspase3, COX2, P21, and P53 were significantly higher than in the control. Taken together, our results showed the importance of FN for preantral follicle developmental, and, for the first time, we reported that FN could neutralize the deleterious consequences of Kp, suggesting a potential role in the regulation of PI3K/Sirt1 signaling in bovine preantral follicle development.


Subject(s)
Fibronectins , Kisspeptins , Animals , Cattle , Female , Granulosa Cells , Kisspeptins/genetics , Kisspeptins/pharmacology , Ovarian Follicle , Phosphatidylinositol 3-Kinases
5.
Int J Mol Sci ; 21(20)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066562

ABSTRACT

Oviduct flushing is enriched by a wide variety of nutrients that guide the 3-4 days journey of pre-implantation embryo through the oviduct as it develops into a competent blastocyst (BL). However, little is known about the specific requirement and role of these nutrients that orchestrate the early stages of embryonic development. In this study, we aimed to characterize the effect of in vitro-derived bovine oviduct epithelial cell (BOECs) secretion that mimics the in vivo oviduct micro-fluid like environment, which allows successful embryonic development. In this study, the addition of an in vitro derived BOECs-condition media (CM) and its isolated exosomes (Exo) significantly enhances the quality and development of BL, while the hatching ability of BLs was found to be high (48.8%) in the BOECs-Exo supplemented group. Surprisingly, BOECs-Exo have a dynamic effect on modulating the embryonic metabolism by restoring the pyruvate flux into TCA-cycle. Our analysis reveals that Exo treatment significantly upregulates the pyruvate dehydrogenase (PDH) and glutamate dehydrogenase (GLUD1) expression, required for metabolic fine-tuning of the TCA-cycle in the developing embryos. Exo treatment increases the influx into TCA-cycle by strongly suppressing the PDH and GLUD1 upstream inhibitors, i.e., PDK4 and SIRT4. Improvement of TCA-cycle function was further accompanied by higher metabolic activity of mitochondria in BOECs-CM and Exo in vitro embryos. Our study uncovered, for the first time, the possible mechanism of BOECs-derived secretion in re-establishing the TCA-cycle flux by the utilization of available nutrients and highlighted the importance of pyruvate in supporting bovine in vitro embryonic development.


Subject(s)
Blastocyst/metabolism , Culture Media, Conditioned/pharmacology , Exosomes/metabolism , Mitochondria/metabolism , Oviducts/metabolism , Animals , Blastocyst/drug effects , Cattle , Cells, Cultured , Citric Acid Cycle , Epithelial Cells/metabolism , Female , Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/metabolism , Mitochondria/drug effects , Oviducts/cytology , Pyruvate Dehydrogenase Complex/genetics , Pyruvate Dehydrogenase Complex/metabolism , Pyruvic Acid/metabolism
6.
Mol Reprod Dev ; 87(10): 1070-1081, 2020 10.
Article in English | MEDLINE | ID: mdl-32885880

ABSTRACT

Increased oxidative stress is one of the main causes of poorly developed embryos in assisted reproductive technologies. Nicotinamide (NAM) has been shown to suppress reactive oxygen species (ROS) production through its potent antioxidative and anti-senescent effects. In the present study, we explored the effects of short-term NAM-treatment (3 and 5 h) during in vitro fertilization (IVF) on the development of bovine embryos. Treatment with 10 mM NAM for 3 h significantly increased the blastocyst formation but extending the treatment to 5 h did not enhance the benefits any further. Immunofluorescence analysis demonstrated that treatment with 10 mM NAM for 3 h decreased the expression of intracellular ROS, 8-oxo-7,8-dihydroguanine, caspase-3, and increased the expression of Sirt1, and incorporation of bromodeoxyuridine in one-cell stage embryos. Similarly, the level of H3K56ac significantly increased in the NAM-treated (3 and 5 h) one-cell stage embryos. Contrastingly, the treatment with 10 mM NAM for 5 h increased the caspase-9 level in blastocysts. Collectively, these findings suggest that NAM possesses antioxidant activity and supplementation of IVF medium with 10 mM NAM for 3 h improves the in vitro developmental competence of bovine embryos.


Subject(s)
Embryonic Development/drug effects , Fertilization in Vitro , Niacinamide/pharmacology , Animals , Antioxidants/pharmacology , Cattle/embryology , Cells, Cultured , Culture Media/chemistry , Culture Media/pharmacology , Embryo Culture Techniques/methods , Embryo Culture Techniques/veterinary , Embryo, Mammalian , Female , Fertilization in Vitro/methods , Fertilization in Vitro/veterinary , Male , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
7.
Cells ; 9(8)2020 07 29.
Article in English | MEDLINE | ID: mdl-32751109

ABSTRACT

Growth factors and cytokines have vital roles in germ cell development, gamete maturation, and early embryo development. Cell surface receptors are present for growth factors and cytokines to integrate with and trigger protein signaling in the germ and embryo intracellular milieu. Src-homology-2-containing phosphotyrosine phosphatase (SHP2) is a ubiquitously expressed, multifunctional protein that plays a central role in the signaling pathways involved in growth factor receptors, cytokine receptors, integrins, and G protein-coupled receptors. Over recent decades, researchers have recapitulated the protein signaling networks that influence gamete progenitor specification as well as gamete differentiation and maturation. SHP2 plays an indispensable role in cellular growth, survival, proliferation, differentiation, and migration, as well as the basic events in gametogenesis and early embryo development. SHP2, a classic cytosolic protein and a key regulator of signal transduction, displays unconventional nuclear expression in the genital organs. Several observations provided shreds of evidence that this behavior is essential for fertility. The growth factor and cytokine-dependent roles of SHP2 and its nuclear/cytoplasmic presence during gamete maturation, early embryonic development and embryo implantation are fascinating and complex subjects. This review is intended to summarize the previous and recent knowledge about the SHP2 functions in gametogenesis and early embryo development.


Subject(s)
Cytokines/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Cell Differentiation , Embryonic Development , Gametogenesis , Humans
8.
Cell Reprogram ; 22(5): 236-243, 2020 10.
Article in English | MEDLINE | ID: mdl-32833512

ABSTRACT

Somatic cell nuclear transfer (SCNT) is an important technique for biological science research. Cytoplasm injection cloning technology (CICT) was developed to improve the reprogramming efficiency as well as to overcome the limitations of SCNT. CICT uses an additional cytoplasm fused with an enucleated oocyte to restore the cytoplasmic volume of the cloned embryo, and this method could improve the reprogramming efficiency of the cloned embryo. In this study, we show that CICT can be adapted to mouse species to overcome the inefficiency of the SCNT method. In this study, results indicate that the two-cell embryo and blastocyst rates of cloned embryos with the use of the CICT method were significantly higher (p < 0.05) than that of the SCNT method (96.6% ± 1.1% vs. 86.7% ± 6.0%, 29.5% ± 2.6% vs. 22.1% ± 3.0%, respectively). Furthermore, the apoptotic cell number per blastocyst was significantly lower in the CICT group than that in the SCNT group (1.7 ± 0.2 vs. 2.9 ± 0.3, p < 0.05). Moreover, the acH3K9/K14 expression level in the CICT group was greater than that of the SCNT group (p < 0.05), and the relative acH3K56 level in the CICT group was significantly (p < 0.05) higher than that in the SCNT group. These results indicate that CICT helps improve the in vitro developmental competence and quality of cloned embryos.


Subject(s)
Cellular Reprogramming Techniques/methods , Cloning, Organism/methods , Embryonic Development , Histones/metabolism , Nuclear Transfer Techniques , Oocytes/growth & development , Acetylation , Animals , Blastocyst/metabolism , Embryo, Mammalian , Female , Methylation , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Oocytes/metabolism
9.
Cells ; 9(6)2020 06 25.
Article in English | MEDLINE | ID: mdl-32630550

ABSTRACT

Nicotinamide (NAM), the amide form of vitamin B3, plays pivotal roles in regulating various cellular processes including energy production and maintenance of genomic stability. The current study aimed at deciphering the effect of NAM, when administered during in vitro maturation (IVM), on the developmental competence of bovine preimplantation embryos. Our results showed that low NAM concentrations reduced the oxidative stress and improved mitochondrial profile, total cleavage and 8-16 cell stage embryo development whereas the opposite profile was observed upon exposure to high NAM concentrations (10 mM onward). Remarkably, the hatching rates of day-7 and day-8 blastocysts were significantly improved under 0.1 mM NAM treatment. Using RT-qPCR and immunofluorescence, the autophagy-related (Beclin-1 (BECN1), LC3B, and ATG5) and the apoptotic (Caspases; CASP3 and 9) markers were upregulated in oocytes exposed to high NAM concentration (40 mM), whereas only CASP3 was affected, downregulated, following 0.1 mM treatment. Additionally, the number of cells per blastocyst and the levels of SIRT1, PI3K, AKT, and mTOR were higher, while the inner cell mass-specific transcription factors GATA6, SOX2, and OCT4 were more abundant, in day-8 embryos of NAM-treated group. Taken together, to our knowledge, this is the first study reporting that administration of low NAM concentrations during IVM can ameliorate the developmental competence of embryos through the potential regulation of oxidative stress, apoptosis, and SIRT1/AKT signaling.


Subject(s)
Blastocyst/metabolism , In Vitro Oocyte Maturation Techniques/methods , Niacinamide/therapeutic use , Oocytes/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Animals , Cattle , Dietary Supplements , Female , Humans , Signal Transduction
10.
Cells ; 9(4)2020 04 09.
Article in English | MEDLINE | ID: mdl-32283810

ABSTRACT

Wnt/ß-catenin signaling plays vital role in the regulation of cellular proliferation, migration, stem cells cell renewal and genetic stability. This pathway is crucial during the early developmental process; however, the distinct role of Wnt/ß-catenin signaling during pre-implantation period of bovine embryonic development is obscure. Here, we evaluated the critical role of Wnt/ß-catenin pathway in the regulation of bovine blastocyst (BL) development and hatching. 6 bromoindurbin-3'oxime (6-Bio) was used to stimulate the Wnt signaling. Treatment with 6-Bio induced the expression of peroxisome proliferator-activated receptor-delta (PPARδ). Interestingly, the PPARδ co-localized with ß-catenin and form a complex with TCF/LEF transcription factor. This complex potentiated the expression of several Wnt directed genes, which regulate early embryonic development. Inhibition of PPARδ with selective inhibitor 4-chloro-N-(2-{[5-trifluoromethyl]-2-pyridyl]sulfonyl}ethyl)benzamide (Gsk3787) severely perturbed the BL formation and hatching. The addition of Wnt agonist successfully rescued the BL formation and hatching ability. Importantly, the activation of PPARδ expression by Wnt stimulation enhanced cell proliferation and fatty acid oxidation (FAO) metabolism to improve BL development and hatching. In conclusion, our study provides the evidence that Wnt induced PPARδ expression co-localizes with ß-catenin and is a likely candidate of canonical Wnt pathway for the regulation of bovine embryonic development.


Subject(s)
Blastocyst/metabolism , Embryonic Development/genetics , PPAR delta/genetics , Wnt Signaling Pathway/genetics , Animals , Cattle , Male , PPAR delta/metabolism
11.
Theriogenology ; 151: 144-150, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32344273

ABSTRACT

Successful implantation is closely linked to the expression of MMP-2 and MMP-9, which greatly influence the ability of an embryo to degrade the basement membrane of the uterine epithelium, mainly composed of type IV collagen, and invade the uterine stroma. The objective of this study was to determine the effect of MMP-2 and MMP-9 co-transfer with embryos on reproductive performance in mice. Using invasion assay, we tested the effect of MMP-2 and MMP-9 for their ability to support trophoblastic invasion in vitro. We performed co-transfer of MMP-2 and MMP-9 with mouse embryos to 2.5 days post-coitum (dpc) pseudo-pregnant uteri using nonsurgical embryo transfer (NSET) technique and evaluated the pregnancy outcomes. Uterine tissue samples were collected to determine collagen content by Masson's trichrome staining. Our results showed that in vitro treatment of MMP-2 and MMP-9 significantly promoted both spreading and invasion of mouse trophoblastic cells compared to the non-treated blastocysts. Moreover, embryo transfer results showed that MMP-9 co-transfer enhanced pregnancy outcome inform of live pup rate by degrading the extracellular matrix, collagen, and facilitate embryo implantation. Taken together our findings imply that MMP-9 can regulate trophoblastic cell invasion during preimplantation, which may have important consequences on embryo implantation, and shed the light on new strategies to avoid miscarriage and provides a platform for successful human embryo transfer technologies.


Subject(s)
Embryo Implantation/physiology , Gene Expression Regulation, Developmental/physiology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Trophoblasts/physiology , Animals , Embryo, Mammalian/metabolism , Female , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Mice , Pregnancy
12.
Int J Mol Sci ; 20(23)2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31810173

ABSTRACT

The PPARs (peroxisome proliferator-activated receptors) play critical roles in the regulation of lipid and glucose metabolism. PPARδ, a member of the PPARs family, is associated with decreased susceptibility to ectopic lipid deposition and is implicated in the regulation of mitochondrial processes. The current study aimed to determine the role of PPARδ in fatty acid ß-oxidation and its influence on PEPCK for the lipogenic/lipolytic balance during in vitro bovine oocyte maturation and embryo development. Activation of PPARδ by GW501516, but not 2-BP, was indicated by intact embryonic PEPCK (cytosolic) and CPT1 expression and the balance between free fatty acids and mitochondrial ß-oxidation that reduced ROS and inhibited p-NF-κB nuclear localization. Genes involved in lipolysis, fatty acid oxidation, and apoptosis showed significant differences after the GW501516 treatment relative to the control- and 2-BP-treated embryos. GSK3787 reversed the PPARδ-induced effects by reducing PEPCK and CPT1 expression and the mitochondrial membrane potential, revealing the importance of PPARδ/PEPCK and PPARδ/CPT1 for controlling lipolysis during embryo development. In conclusion, GW501516-activated PPARδ maintained the correlation between lipolysis and lipogenesis by enhancing PEPCK and CPT1 to improve bovine embryo quality.


Subject(s)
Carnitine O-Palmitoyltransferase/genetics , Embryonic Development/genetics , PPAR delta/genetics , Phosphoenolpyruvate Carboxylase/genetics , Animals , Apoptosis , Cattle , Fatty Acids, Nonesterified/metabolism , Lipid Metabolism/genetics , Lipogenesis/drug effects , Lipolysis/drug effects , Mitochondria/drug effects , Mitochondria/genetics , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Oxidation-Reduction , Thiazoles/pharmacology
13.
Cells ; 8(10)2019 10 18.
Article in English | MEDLINE | ID: mdl-31635340

ABSTRACT

This study was aimed to investigate the role of SHP2 (Src-homology-2-containing phosphotyrosine phosphatase) in intricate signaling networks invoked by bovine oocyte to achieve maturation and blastocyst development. PTPN11 (Protein Tyrosine Phosphatase, non-receptor type 11) encoding protein SHP2, a positive transducer of RTKs (Receptor Tyrosine Kinases) and cytokine receptors, can play a significant role in bovine oocyte maturation and embryo development, but this phenomenon has not yet been explored. Here, we used different growth factors, cytokines, selective activator, and a specific inhibitor of SHP2 to ascertain its role in bovine oocyte developmental stages in vitro. We found that SHP2 became activated by growth factors and cytokines treatment and was highly involved in the activation of oocyte maturation and embryo development pathways. Activation of SHP2 triggered MAPK (mitogen-activated protein kinases) and PI3K/AKT (Phosphoinositide 3-kinase/Protein kinase B) signaling cascades, which is not only important for GVBD (germinal vesical breakdown) induction but also for maternal mRNA translation. Inhibition of phosphatase activity of SHP2 with PHPS1 (Phenylhydrazonopyrazolone sulfonate 1) reduced oocytes maturation as well as bovine blastocyst ICM (inner cell mass) volume. Supplementation of LIF (Leukemia Inhibitory Factor) to embryos showed an unconventional direct relation between p-SHP2 and p-STAT3 (Signal transducer and activator of transcription 3) for blastocyst ICM development. Other than growth factors and cytokines, cisplatin was used to activate SHP2. Cisplatin activated SHP2 modulate growth factors effect and combine treatment significantly enhanced quality and rate of developed blastocysts.


Subject(s)
Blastocyst/cytology , Blastocyst/metabolism , Oocytes/cytology , Oocytes/metabolism , Ovary/cytology , Ovary/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Animals , Apoptosis/drug effects , Benzenesulfonates/pharmacology , Blotting, Western , Cattle , Chromatin/metabolism , Cisplatin/pharmacology , DNA, Complementary/genetics , DNA, Complementary/metabolism , Female , Fibroblast Growth Factor 2/metabolism , Fluorescent Antibody Technique , Hydrazones/pharmacology , In Situ Nick-End Labeling , Leukemia Inhibitory Factor/pharmacology , Male , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Receptors, Cytokine/metabolism
14.
Anim Reprod Sci ; 208: 106125, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31405460

ABSTRACT

Somatic cell nuclear transfer (SCNT) is an important technique for producing cloned animals. It, however, is inefficient when there is use of SCNT for cloned animal production. Cytoplasm injection cloning technology (CICT) was developed to overcome the inefficiencies of SCNT use of this purpose. The use of CICT involves additional cytoplasm fusing with enucleated oocytes to restore the cytoplasmic volume, thus improving the in vitro developmental competence and quality of cloned embryos. In this study, there was application of CICT in cats to improve the in vitro developmental competence of cloned embryos, as well as the production of the offspring. The results of this study were that fusion rate of the cloned embryos with use of the CICT method was greater than that with SCNT (80.0 ± 4.8% compared with 67.8 ± 11.3%, respectively), and more blastocysts developed with use of CICT than SCNT (20.0 ± 2.0% compared with 13.5 ± 5.0%, respectively). The 62 cloned embryos that were produced with use of CICT were transferred into five estrous synchronized recipients, and 151 cloned embryos produced using SCNT were transferred to 13 estrous-synchronized recipients. After the embryo transfer, there was birth from surrogate mothers of one live-born kitten that resulted using SCNT compared with three live-born kittens using CICT. The number of CICT-cloned embryos born was greater than that of SCNT-cloned embryos (4.8 ± 2.3% compared with 0.7 ± 1.3%, P < 0.05). These results indicate that the CICT technique can be used to produce cloned kittens, including endangered feline species.


Subject(s)
Cats , Cloning, Organism/veterinary , Cytoplasm , Embryo, Mammalian/physiology , Embryonic Development/physiology , Animals , Embryo Culture Techniques/veterinary , Embryo Transfer/veterinary , Endangered Species , Female , Nuclear Transfer Techniques/veterinary , Pregnancy
15.
Int J Mol Sci ; 20(12)2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31212969

ABSTRACT

Melatonin, a nighttime-secreted antioxidant hormone produced by the pineal gland, and AKT, a serine/threonine-specific protein kinase, have been identified as regulators for several cellular processes essential for reproduction. The current study aimed to investigate the potential interplay between melatonin and AKT in bovine oocytes in the context of embryo development. Results showed that the inclusion of SH6, a specific AKT inhibitor, during in vitro maturation (IVM) significantly reduced oocyte maturation, cumulus cell expansion, cleavage, and blastocyst development that were rescued upon addition of melatonin. Oocytes treated with SH6 in the presence of melatonin showed lower levels of reactive oxygen species (ROS) and blastocysts developed exhibited low apoptosis while the mitochondrial profile was significantly improved compared to the SH6-treated group. The RT-qPCR results showed up-regulation of the mRNA of maturation-, mitochondrial-, and cumulus expansion-related genes including GDF-9, BMP-15, MARF1, ATPase, ATP5F1E, POLG2, HAS2, TNFAIP6, and PTGS2 and down-regulation of Bcl-2 associated X apoptosis regulator (BAX), caspase 3, and p21 involved in apoptosis and cell cycle arrest in melatonin-SH6 co-treated group compared to SH6 sole treatment. The immunofluorescence showed high levels of caspase 3 and caspase 9, and low AKT phosphorylation in the SH6-treated group compared to the control and melatonin-SH6 co-treatment. Taken together, our results showed the importance of both melatonin and AKT for overall embryonic developmental processes and, for the first time, we report that melatonin could neutralize the deleterious consequences of AKT inhibition, suggesting a potential role in regulation of AKT signaling in bovine oocytes.


Subject(s)
Embryonic Development/drug effects , Melatonin/pharmacology , Oocytes/drug effects , Oocytes/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Animals , Apoptosis/drug effects , Cattle , Cell Nucleus/metabolism , Cumulus Cells/drug effects , Female , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
16.
Theriogenology ; 134: 1-10, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31108431

ABSTRACT

The mammalian Sirtuin family of seven enzymes, members of the NAD+-dependent histone deacetylase family that modify histones via direct deacetylation, is involved in the regulation of many antioxidant and oxidative stresses. In the present study, we explored the effects of nicotinamide (NAM)-induced oxidative stress on the in vitro development of bovine embryos, on the acetylation of histone H3 lysine 56 (H3K56ac) and on expression of apoptosis-related genes. Treatment with NAM (10, 20 or 40 mM for 24, 48 or 196 h) during IVC resulted in significantly decreased blastocyst formation (24 h: 38.8 vs. 33.1, 27.3 and 10.2%, with P > 0.05, P < 0.05 and P < 0.01, respectively; 48 h: 37.5 vs. 28.2, 13.4 and 0%, with P < 0.05 and P < 0.01, respectively; 196 h: 35.8 vs. 23.4, 0 and 0%, with P < 0.05, respectively). Treatment with NAM (20 and 40 mM for 24 h) resulted in increased intracellular reactive oxygen species (ROS) levels in 2-cell and blastocysts, and apoptotic cell numbers in blastocysts and decreased mitochondrial membrane potential (ΔΨ) in 2-cell embryos (P < 0.05). Polydatin (PD) and I-CBP112 rescued the 20 mM NAM-induced embryo developmental defects and reduced ROS levels and apoptotic cell numbers in blastocysts (P < 0.05). The gene expression of NF-κB, COX2 and p53 was significantly increased in the NAM-treated group. Immunofluorescence analysis confirmed that the protein levels of nuclear factor-kappa B (NF-κB) decreased significantly after PD and I-CBP112 treatment compared with the control (P < 0.05). High level of H3K56ac induced by NAM was decreased after PD and I-CBP112 treatment (P < 0.05). These findings suggest that NAM treatment induces high levels of H3K56 acetylation that may be involved in oxidative stress-induced bovine developmental defects, which can be tolerated by PD and I-CBP112 treatment.


Subject(s)
Cattle/embryology , Embryonic Development/drug effects , Glucosides/pharmacology , Oxazepines/pharmacology , Piperidines/pharmacology , Stilbenes/pharmacology , Acetylation , Animals , Apoptosis/genetics , Cyclooxygenase 2/metabolism , Embryo Culture Techniques/veterinary , Histones/metabolism , Membrane Potential, Mitochondrial/drug effects , NF-kappa B/genetics , NF-kappa B/metabolism , Niacinamide/pharmacology , Oxidative Stress , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/metabolism
17.
J Am Assoc Lab Anim Sci ; 58(3): 304-310, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30971328

ABSTRACT

Predator Stress Can Exert Detrimental Effects on Female Mammals, Leading to Disrupted Reproduction. Although Many Studies Have Addressed the Effects of Predator Stress on Reproductive Output in Rodents, Few Studies Have Focused on the Effect of Visual or Auditory Stress on Pregnant Females. in This Study, We Investigated the Possible Effect of Predator Stress, Either Visual Only or Combined Visual and Auditory (visual+auditory), on the Reproductive Performance of Female Mice After Nonsurgical Embryo Transfer. Reproductive Performance Was Assessed As Pregnancy Rate, Implantation Rate, Gestation Length, Live Pup Rate, and Neonatal Birth Weight. Moreover, Serum Cortisol and Progesterone Levels in Dams Were Measured by Using Electrochemiluminescence Immunoassay. Exposure to Predator (cat) Stress Did Not Lead to a Significant Change in Pregnancy Rates in the Tested Mice. However, the Stressed Mice Showed Significantly Decreased Implantation Rates Compared with the Control Group. Similarly, the Live Pup Rate and Neonatal Birth Weight Were Significantly Lower in the Group Exposed to Preda- Tor Stress Than in the Control Group. Furthermore, Mice Exposed to Visual+auditory Stress Showed a Significant Reduction in Gestation Length Compared with the Control Mice. Our Data Showed That Predator Visual+auditory Stress As Combined Stimuli Significantly Increased Serum Cortisol Level. in Contrast, Progesterone Levels Did Not Significantly Vary Among the Experimental Groups. Taken Together, Our Findings Imply That Predator Stress Adversely Affects the Reproductive Efficiency of Pregnant Mice By Decreasing the Implantation Rate, Live Birth Rate, and Neonatal Birth Weight and by Prolonging Gestation Length.


Subject(s)
Embryo Transfer/veterinary , Mice/physiology , Predatory Behavior , Pregnancy Outcome , Reproduction , Animals , Female , Hydrocortisone/blood , Laboratory Animal Science , Pregnancy , Progesterone/blood , Reproduction/drug effects , Sound , Stress, Psychological
18.
Cell Reprogram ; 21(1): 51-60, 2019 02.
Article in English | MEDLINE | ID: mdl-30735075

ABSTRACT

Somatic cell nuclear transfer (SCNT) is a useful technology; however, its efficiency is low. In this study, we investigated the effects of cytoplasmic transfer into enucleated oocytes on the developmental competence and quality of cloned preimplantation bovine embryos via terminal deoxynucleotidyl transferase dUTP nick-end labeling, quantitative reverse transcription PCR, and immunocytochemistry. We used cytoplasm injection cloning technology (CICT), a new technique via which the cytoplasmic volume of an enucleated oocyte could be restored by injecting ∼30% of the cytoplasm of a donor oocyte. The percentages of embryos that underwent cleavage and formed a blastocyst were significantly higher (p < 0.05) in the CICT group than in the SCNT group (28.9 ± 0.8% vs. 20.2 ± 1.3%, respectively). Furthermore, the total cell number per day 8 blastocyst was significantly higher in the CICT group than in the SCNT group (176.2 ± 6.5 vs. 119.3 ± 7.7, p < 0.05). Moreover, CICT increased mitochondrial activity, as detected using MitoTracker® Green. The mRNA levels of DNA methyltransferase 1 and DNA methyltransferase 3a were significantly lower (p < 0.05) in the CICT group than in the SCNT group. The mRNA level of DNA methyltransferase 3b was lower in the CICT group than in the SCNT group; however, this difference was not significant (p > 0.05). Taken together, these data suggest that CICT improves the in vitro developmental competence and quality of cloned bovine embryos.


Subject(s)
Blastocyst/cytology , Cattle/embryology , Cloning, Organism , DNA (Cytosine-5-)-Methyltransferases/metabolism , Oocytes/cytology , Animals , Cytoplasm , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation , Embryonic Development , Female , Mitochondria/metabolism , Nuclear Transfer Techniques/veterinary
19.
Int J Mol Sci ; 21(1)2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31905822

ABSTRACT

Sex-related growth differences between male and female embryos remain an attractive subject for reproductive biologists. This study aimed to investigate the endogenous factors that play a crucial role in the pace of early development between male and female bovine embryos. Using sex pre-selected semen by Y-specific monoclonal antibodies for the production of bovine embryos, we characterized the critical endogenous factors that are responsible for creating the development differences, especially during the pre-implantation period between male and female embryos. Our results showed that at day seven, (57.8%) Y-sperm sorted in vitro cultured embryos reached the expanded blastocyst (BL) stage, whereas the X-sperm sorted group were only 25%. Y-BLs showed higher mRNA abundance of pluripotency and developmental competency regulators, such as Oct4 and IGF1-R. Interestingly, Y-sperm sorted BLs had a homogeneous mitochondrial distribution pattern, higher mitochondrial membrane potential (∆Ñ°m), efficient OXPHOS (oxidative phosphorylation) system and well-encountered production of ROS (reactive oxygen species) level. Moreover, Y-blastocysts (BLs) showed less utilization of glucose metabolism relative to the X-BLs group. Importantly, both sexes showed differences in the timing of epigenetic events. All these factors directly or indirectly orchestrate the whole embryonic progression and may help in the faster and better quality yield of BL in the Y-sperm sorted group compared to the X counterpart group.


Subject(s)
Antibodies, Monoclonal/metabolism , Blastocyst/metabolism , Embryonic Development/immunology , Y Chromosome , Animals , Cattle/embryology , Embryo, Mammalian , Embryonic Development/genetics , Female , Genes, X-Linked , Genes, Y-Linked , Glucose/metabolism , Kinetics , Male , Membrane Potential, Mitochondrial , Mitochondria , Phosphorylation , Sex Factors , Spermatozoa , X Chromosome
20.
Reprod Fertil Dev ; 31(2): 333-346, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30086822

ABSTRACT

This study investigated the use of bovine serum albumin (BSA) plus insulin-transferrin-sodium selenite (ITS) and/or epidermal growth factor (EGF) as alternatives to fetal bovine serum (FBS) in embryo culture medium. The developmental ability and quality of bovine embryos were determined by assessing their cell number, lipid content, gene expression and cryotolerance, as well as the invasion ability of trophoblasts. The percentage of embryos that underwent cleavage and formed a blastocyst was higher (P<0.01) in medium containing ITS plus EGF and BSA than in medium containing FBS. Culture with ITS plus EGF and BSA also increased the hatching ability of blastocysts and the total cell number per blastocyst. Furthermore, the beneficial effects of BAS plus ITS and EGF on embryos were associated with a significantly reduced intracellular lipid content, which increased their cryotolerance. An invasion assay confirmed that culture with ITS plus EGF and BSA significantly improved the invasion ability of trophoblasts. Real-time quantitative polymerase chain reaction analysis showed that the mRNA levels of matrix metalloproteinase-2 (MMP2) and MMP9, acyl-CoA synthetase long-chain family member 3, acyl-coenzyme A dehydrogenase long-chain and hydroxymethylglutaryl-CoA reductase significantly increased upon culture with ITS plus EGF and BSA. Moreover, protein expression levels of matrix metalloproteinase-2 and -9 increased (P<0.01) in medium supplemented with ITS plus EGF and BSA compared with medium supplemented with FBS. Taken together, these data suggest that supplementation of medium with ITS plus EGF and BSA improves invitro bovine embryo production, cryotolerance and invasion ability of trophoblasts.


Subject(s)
Embryonic Development/drug effects , Epidermal Growth Factor/administration & dosage , Insulin/administration & dosage , Matrix Metalloproteinases/metabolism , Serum Albumin, Bovine/administration & dosage , Sodium Selenite/administration & dosage , Transferrin/administration & dosage , Animals , Cattle , Culture Media , Embryo Culture Techniques , Embryonic Development/physiology , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...