Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 35(9): e21876, 2021 09.
Article in English | MEDLINE | ID: mdl-34449112

ABSTRACT

Compared with the well-described XY sex determination system in mammals, the avian ZW sex determination system is poorly understood. Knockdown and overexpression studies identified doublesex and mab-3-related transcription factor 1 (DMRT1) as the testis-determining gene in chicken. However, the detailed effects of DMRT1 gene disruption from embryonic to adult development are not clear. Herein, we have generated DMRT1-disrupted chickens using the clustered regularly interspaced short palindromic repeats-associated protein 9 system, followed by an analysis of physiological, hormonal, and molecular changes in the genome-modified chickens. In the early stages of male chicken development, disruption of DMRT1 induced gonad feminization with extensive physiological and molecular changes; however, functional feminine reproductivity could not be implemented with disturbed hormone synthesis. Subsequent RNA-sequencing analysis of the DMRT1-disrupted chicken gonads revealed gene networks, including several novel genes linearly and non-linearly associated with DMRT1, which are involved in gonad feminization. By comparing the gonads of wild type with the genome-modified chickens, a set of genes were identified that is involved in the ZW sex determination system independent of DMRT1. Our results extend beyond the Z-dosage hypothesis to provide further information about the avian ZW sex determination system and epigenetic effects of gonad feminization.


Subject(s)
Chickens/genetics , Feminization/genetics , Gonads/physiology , Transcription Factors/genetics , Animals , Female , Gene Expression Regulation, Developmental/genetics , Gene Regulatory Networks/genetics , Male , Ovary/physiology , Sex Chromosomes , Testis/physiology
2.
FASEB J ; 34(12): 15907-15921, 2020 12.
Article in English | MEDLINE | ID: mdl-33031594

ABSTRACT

Base editing technology enables the generation of precisely genome-modified animal models. In this study, we applied base editing to chicken, an important livestock animal in the fields of agriculture, nutrition, and research through primordial germ cell (PGC)-mediated germline transmission. Using this approach, we successfully produced two genome-modified chicken lines harboring mutations in the genes encoding ovotransferrin (TF) and myostatin (MSTN); however, only 55.5% and 35.7% of genome-modified chickens had the desired base substitutions in TF and MSTN, respectively. To explain the low base-editing activity, we performed molecular analysis to compare DNA repair pathways between PGCs and the chicken fibroblast cell line DF-1. The results revealed that base excision repair (BER)-related genes were significantly elevated in PGCs relative to DF-1 cells. Subsequent functional studies confirmed that the editing activity could be regulated by modulating the expression of uracil N-glycosylase (UNG), an upstream gene of the BER pathway. Collectively, our findings indicate that the distinct DNA repair property of chicken PGCs causes low editing activity during genome modification, however, modulation of BER functions could promote the production of genome-modified organisms with the desired genotypes.


Subject(s)
Chickens/genetics , DNA Repair/genetics , Germ Cells/physiology , Amino Acid Sequence , Animals , Animals, Genetically Modified/genetics , Base Sequence , Cell Line , Conalbumin/genetics , Fibroblasts/physiology , Gene Editing/methods , Genome/genetics , Myostatin/genetics , Signal Transduction/genetics , Uracil-DNA Glycosidase/genetics
3.
Theriogenology ; 156: 189-195, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32755718

ABSTRACT

The germplasm is a resource and tool for the conservation of genetic diversity in animals, including birds. Securing germplasm is limited in most bird species due to difficulties in semen collection and germ cell isolation, lack of germ cell-specific markers, and in vitro culture systems. Here, we report the production of germline chimeric quails by transplant of cryopreserved testicular cells (TCs) into the developing embryo. The testicular germ cell properties were maintained after freeze-thaw, with no significant reduction in cell viability irrespective of storage length. Cryopreserved TCs were transferred into Hamburger Hamilton (HH) stage 14-17 quail embryos, and were demonstrated to migrate into the embryonic gonads with similar efficiency to freshly isolated TCs. Twenty of 81 recipient embryos yielded hatchlings from cryopreserved TCs and the germline transmission efficiency was similar to that of freshly isolated cells. In conclusion, cryopreserved adult quail TCs are capable of (de)differentiation into functional gametes in recipient quail gonads and can generate donor TCs-derived progenies. This system is feasible for the isolation of sufficient germplasm resources from various bird species for conservation purposes.


Subject(s)
Germ Cells , Quail , Animals , Chimera , Gonads , Male , Testis
SELECTION OF CITATIONS
SEARCH DETAIL
...