Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
ChemSusChem ; : e202400636, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828662

ABSTRACT

The stability of high-energy-density lithium metal batteries (LMBs) heavily relies on the composition of the solid electrolyte interphase (SEI) formed on lithium metal anodes. In this study, the inorganic-rich SEI layer was achieved by incorporating bisalts additives into carbonate-based electrolytes. Within this SEI layer, the presence of LiF, polythionate, and Li3N was observed, generated by combining 1.0 м lithium bis(trifluoromethanesulfonyl)imide in ethylene carbonate: ethyl methyl carbonate:dimethyl carbonate in a 1:1:1 volume ratio, with the addition of 2 wt% lithium difluorophosphate and 2 wt% lithium difluoro(oxalato)borate additives (EL-DO). Furthermore, this formulation effectively mitigated corrosion of aluminum current collectors. EL-DO exhibited outstanding performance, including an average coulombic efficiency of 98.2% in Li||Cu cells and a stable discharge capacity of approximately 162 mAh g-1 after 200 cycles in a Li||LiNi0.8Co0.1Mn0.1O2 (NCM811) configuration. Moreover, EL-DO displayed the potential to enhance the performance not only of LMBs but also of lithium-ion batteries. In the case of Gr||NCM811 cell using EL-DO, it consistently maintained high discharge capacities, even achieving around 135 mAh g-1 after the 100th cycle, surpassing the performance of other electrolytes. This study underscores the synergistic impact of bisalts additives in elevating the performance of lithium batteries.

2.
Small ; : e2307951, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770978

ABSTRACT

Lithium-sulfur batteries (LSBs) are considered a highly promising next-generation energy storage technology due to their exceptional energy density and cost-effectiveness. However, the practical use of current LSBs is hindered primarily by issues related to the "shuttle effect" of lithium polysulfide (LiPS) intermediates and the growth of lithium dendrites. In strongly solvating electrolytes, the solvent-derived solid electrolyte interphase (SEI) lacks mechanical strength due to organic components, leading to ineffective lithium dendrite suppression and severe LiPS dissolution and shuttling. In contrast, the weakly solvating electrolyte (WSE) can create an anion-derived SEI layer which can enhance compatibility with lithium metal anode, and restricting LiPS solubility. Herein, a WSE consisting of 0.4 Ð¼ LiTFSI in the mixture of 1,4-dioxane (DX):dimethoxymethane (DMM) is designed to overcome the issues associated with LSB. Surface analyses confirmed the formation of a beneficial SEI layer rich in LiF, enabling homogeneous lithium deposition with an average Coulombic efficiency CE exceeding 99% over 100 cycles. Implementing the low-concentration WSE in Li||SPAN cells yielded an impressive initial specific capacity of 671 mAh g-1. This research highlights the advantages of WSE and offers the pathway for cost-effective electrolyte development, enabling the realization of high-performance LSBs.

3.
ACS Appl Mater Interfaces ; 15(41): 48122-48134, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37791814

ABSTRACT

Based on the ambipolar characteristics and high solubility of ZnI2, zinc-polyiodide flow batteries (ZIFB) have attracted attention as high-energy density flow batteries. However, due to the various oxidation products of iodide (I-) and the formation of iodine (I2) solid precipitates at the positive electrode, the limiting state-of-charge (SoC) of ZIFB has not been clearly defined. Herein, a clear definition of SoC in ZIFBs is given based on the thermodynamic relationship among I-(aq), I3-(aq), I5-(aq), and I2(aq) in the electrolyte. Conventional ZIFBs are limited by their maximum attainable SoC of 87%, at which the fully charged catholyte includes I-, I3-, and I5- ions at molar ratios of 49.6, 32.2, and 18.1%, respectively. Furthermore, two effective strategies to extend the maximum SoC are suggested: (1) increasing the formation constant (Keq) of I3- can raise the availability of I- for electrooxidation by suppressing I2 precipitation, and (2) promoting the production of higher-order polyiodides such as I5- can increase the oxidation state of the charged electrolyte. The addition of 5 vol % triethylene glycol (tri-EG) to the electrolyte increased Keq from 710 to 1123 L mol-1; this increase was confirmed spectrophotometrically. Tri-EG stabilized I5- ions in the form of the I5-/tri-EG complex, thereby converting the main oxidation product from I3- to I5-. The preferred electrochemical production of I5- in the tri-EG electrolyte was observed by electrochemical and computational analyses. As a result, the maximum attainable SoC was enhanced remarkably to 116%, yielding molar ratios of I-, I3-, and I5- ions of 9.1, 11.2, and 79.7%, respectively. This SoC extension effect was confirmed in the ZIFB flow cell with stable charge-discharge cycling at the SoC 120% limit, demonstrating the highest energy density, 249.9 Wh L-1, among all reported ZIFBs.

4.
ChemSusChem ; 16(20): e202300756, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37485761

ABSTRACT

The successful implementation of supercapacitors in large-scale applications necessitates careful consideration of safety aspects, along with factors such as energy density, power density, working voltage, and cycling performance. One effective method for ensuring safety is the utilization of nonflammable trimethyl phosphate (TMP) electrolyte in supercapacitors. However, this approach suffers from the drawback of low power density due to its low ionic conductivity. To overcome this limitation, we propose the addition of co-solvents, namely propylene carbonate, acetonitrile, and propionitrile (PN), to enhance limited electrochemical properties of TMP-based electrolytes. We systematically investigate the impact of incorporating TMP into various organic solvents on physical and electrochemical properties. Binary electrolytes show improved ionic conductivity, capacitance, power density, energy density, and working voltage compared to the single TMP-based electrolyte. Notably, our result highlights that the carbon-based supercapacitors using TMP-PN with 70 : 30 volume ratio electrolyte provide the best compromise between ionic conductivity (13.5 mS cm-1 ), capacitance (24.0 F g-1 ), energy density (13.2 Wh kg-1 ), power density (2.3 kW kg-1 ), working voltage (3.5 V), and safety. By combining the nonflammable properties of TMP with co-solvents, we can overcome the trade-off between safety and electrochemical performances, presenting advancement in the development of supercapacitors for energy storage applications.

5.
Nanoscale Adv ; 5(3): 615-626, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36756532

ABSTRACT

To achieve a zero-carbon-emission society, it is essential to increase the use of clean and renewable energy. Yet, renewable energy resources present constraints in terms of geographical locations and limited time intervals for energy generation. Therefore, there is a surging demand for developing high-performance energy storage systems (ESSs) to effectively store the energy during the peak time and use the energy during the trough period. To this end, supercapacitors hold great promise as short-term ESSs for rapid power recovery or frequency regulation to improve the quality and reliability of power supply. In particular, the electrical double layer capacitor (EDLC) which offers long and stable cycle retention, high power densities, and fast charge/discharge characteristics with a moderate operating voltage window, is a suitable candidate. Yet, for implementation of the EDLC in ESSs, further research effort is required in terms of increasing the operating voltage and energy densities while maintaining the long-term cycle stability and power densities which are desirable aspects for ESS operation. Here, we examine the advances in EDLC research to achieve a high operating voltage window along with high energy densities, covering from materials and electrolytes to long-term device perspectives for next-generation supercapacitor-based ESSs.

6.
J Phys Chem Lett ; 13(33): 7881-7888, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35979999

ABSTRACT

Lithium-ion batteries face insufficient capacity at low temperatures. The lithium-ion desolvation process in the vicinity of a solid electrolyte interphase (SEI) layer is considered the major problem. Thus, an accurate determination of lithium-ion solvation structures is a prerequisite for understanding this process. Here, using a cryostat combined with an FTIR spectrometer, we found that as the temperature decreased, the number of coordinating carbonates in the first solvation shell of the lithium ion increased with a decreased population of the contact ion pair (CIP). More specifically, we found that two or more carbonate molecules replace a single PF6- anion upon CIP dissociation. This experimental finding shows that the prevailing notion that four carbonate molecules coordinate each lithium ion to form a tetrahedral structure is invalid for describing lithium-ion solvation structures. We anticipate that the present work will elucidate one of the molecular origins behind the low performance of lithium-ion batteries at low temperatures.

7.
Small ; 18(14): e2107492, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35212457

ABSTRACT

Li metal batteries (LMBs) are ideal candidates for future high-energy-density battery systems. To date, high-voltage LMBs suffer severe limitations because of electrolytes unstable against Li anodes and high-voltage cathodes. Although ether-based electrolytes exhibit good stability with Li metal, compared to carbonate-based electrolytes, they have been used only in ≤4.0 V LMBs because of their limited oxidation stability. Here, a high concentration electrolyte (HCE) comprising lithium bis(fluorosulfonyl)imide (LiFSI) and a weakly solvating solvent (1,2-diethoxyethane, DEE) is designed, which can regulate unique solvation structures with only associated complexes at relatively lower concentration compared to the reported HCEs. This effectively suppresses dendrites on the anode side, and preserves the structural integrity of the cathode side under high voltages by the formation of stable interfacial layers on a Li metal anode and LiNi0.8 Mn0.1 Co0.1 O2 (NMC811) cathode. Consequently, a 3.5 m LiFSI-DEE plays an important role in enhancing the stability of the Li||NMC811 cell with a capacity retention of ≈94% after 200 cycles under a high current density of 2.5 mA cm-2 . In addition, the 3.5 m LiFSI-DEE electrolyte exhibits good performance with anode-free batteries. This study offers a promising approach to enable ether-based electrolytes for high-voltage LMBs applications.

8.
Small ; 17(46): e2103375, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34636172

ABSTRACT

Lithium metal is a promising anode material for lithium metal batteries (LMBs). However, dendrite growth and limited Coulombic efficiency (CE) during cycling have prevented its practical application in rechargeable batteries. Herein, a highly concentrated electrolyte composed of an ether solvent and lithium bis(fluorosulfonyl)imide (LiFSI) salt is introduced, which enables the cycling of a lithium metal anode at a high CE (up to ≈99%) without dendrite growth, even at high current densities. Using 3.85 m LiFSI in tetrahydrofuran (THF) as the electrolyte, a Li||Li symmetric cell can be cycled at 1.0 mA cm-2 for more than 1000 h with stable polarization of ≈0.1 V, and Li||LFP cells can be cycled at 2 C (1 C = 170 mA g-1 ) for more than 1000 cycles with a capacity retention of 94.5%. These excellent performances are observed to be attributed to the increased cation-anion associated complexes, such as contact ion pairs and aggregate in the highly concentrated electrolyte; revealed by Raman spectroscopy and theoretical calculations. These results demonstrate the benefits of a high-concentration LiFSI-THF electrolyte system, generating new possibilities for high-energy-density rechargeable LMBs.

9.
Anal Chem ; 93(37): 12594-12601, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34491717

ABSTRACT

Organic carbonate electrolytes are widely used materials for lithium-ion batteries. However, detailed solvation structures and solvent coordination numbers (CNs) of lithium cations in such solutions have not been accurately described nor determined yet. Because transmission-type IR spectroscopy is not of use for measuring the carbonyl stretch modes of electrolytes due to their absorption saturation problem, we here show that simple spacer-free thin cell IR spectroscopy can provide quantitative information on the number of solvating carbonate molecules around each lithium ion. We could estimate the solvent (carbonate) CNs of lithium ions in dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, propylene carbonate, and butylene carbonate over a wide range of lithium salt concentrations accurately, and they are compared with the previous results obtained with attenuated total reflection IR spectroscopy technique. We anticipate that our spacer-free thin cell approach will potentially be used to investigate the solvation dynamics, chemical exchange process, and vibrational energy transfers between solvating carbonate molecules in lithium salt electrolytes when combined with time-resolved IR spectroscopy.


Subject(s)
Electrolytes , Lithium , Carbonates , Solvents , Spectroscopy, Fourier Transform Infrared
10.
Small ; 17(20): e2100133, 2021 May.
Article in English | MEDLINE | ID: mdl-33797203

ABSTRACT

So far, the practical application of Li metal batteries has been hindered by the undesirable formation of Li dendrites and low Coulombic efficiencies (CEs). Herein, 1,2-diethoxyethane (DEE) is proposed as a new electrolytic solvent for lithium metal batteries (LMBs), and the performances of 1.0 m LiFSI in DEE are evaluated. Because of the low dielectric constant and dipole moment of DEE, the majority of the FSI- exists in associated states like contact ion pairs and aggregates, which is similar to the highly concentrated electrolytes. These associated complexes are involved in the reduction reaction on the Li metal anode, forming sound solid electrolyte interphase layers. Furthermore, free FSI- ions in DEE are observed to participate in the formation of cathode electrolyte interphase layers. These passivation layers not only suppress dendrite growth on the Li anode but also prevent unwanted side-reactions on the LiFePO4 cathode. The average CE of the Li||Cu cells in LiFSI-DEE is observed to be 98.0%. Moreover, LiFSI-DEE also plays an important role in enhancing the cycling stability of the Li||LiFP cell with a capacity retention of 93.5% after 200 cycles. These results demonstrate the benefits of LiFSI-DEE, which creates new possibilities for high-energy-density rechargeable LMBs.

11.
RSC Adv ; 10(15): 9165-9171, 2020 Feb 27.
Article in English | MEDLINE | ID: mdl-35496532

ABSTRACT

The catalytic efficiency and recyclability of poly(maleic anhydride-alt-1-octadecene) (Od-MA) and poly(maleic anhydride-alt-1-isobutylene) (Bu-MA) were evaluated for use in the development of a metal-free, reusable catalyst for the oxidation of pyridines to pyridine N-oxides in the presence of H2O2. The Od-MA catalyst was easily recovered via filtration with recovery yields exceeding 99.8%. The catalyst retained its activity after multiple uses and did not require any treatment for reuse. The Od-MA and H2O2 catalytic system described herein is eco-friendly, operationally simple, and cost-effective; thus, it is industrially applicable. Od-MA and H2O2 could potentially be used in place of percarboxylic acid as an oxidant in a wide range of oxidation reactions.

12.
J Phys Chem B ; 123(31): 6651-6663, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31074985

ABSTRACT

Lithium ion battery (LIB) technology is undoubtedly indispensable to modern life. However, despite enormous and extended effort to improve LIB performance, our understanding of the underlying principles and mechanisms of lithium ion transport in nonaqueous LIB electrolytes remained limited until recently. There is a particular lack of knowledge of the microscopic solvation structures and fluctuation dynamics around charge carriers in real electrolytes. Typical electrolytes found in commercially available LIBs consist of lithium salts and mixed carbonate solvents, with the latter playing an essential role in promoting lithium ion transport and forming an electrically stable solid electrolyte interphase. Although a number of linear spectroscopic studies of LIB electrolytes aiming at understanding the complex nature of lithium ion solvation processes have been reported, the notion that each lithium ion is strongly solvated by carbonate molecules to form a long-lasting solvation sheath structure has remained the subject of intense debate. Here, we present the results of FTIR, fs IR pump-probe, two-dimensional IR spectroscopy, and molecular dynamics simulations reported by us and others and discuss the possible interplay of picosecond solvation dynamics and macroscopic ion transport processes within the framework of the fluctuation-dissipation relationship. Further, by measuring the time-dependent fluctuations and spectral diffusions of carbonate carbonyl stretch modes that act as excellent infrared probes for the local electrostatic environment, we show that lithium cations are not only solvated by carbonate molecules but also interact with counteranions at equilibrium depending on solvent composition. Molecular dynamics simulations support the notion that rapid chemical exchanges between carbonate solvent molecules in the first and outer solvation shells are critical for describing mobile lithium ion transport phenomena. We thus anticipate that time-resolved coherent multidimensional vibrational spectroscopy is capable of providing decisive evidence on the ultrafast solvent dynamics of various electrolytes, which is potentially helpful for designing improved and more efficient LIB electrolytes in the future.

13.
RSC Adv ; 9(72): 42096-42109, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-35542833

ABSTRACT

We designed and synthesized regio-regular alternating diketopyrrolopyrrole (DPP)-based D1-A-D2-A terpolymers (PDPPF2T2DPP-T2, PDPPF2T2DPP-TVT, and PDPPF2T2DPP-DTT) using a primary donor (D1) [3,3'-difluoro-2,2'-bithiophene (F2T2)] and a secondary donor (D2) [2,2'-bithiophene (T2), (E)-1,2-di(thiophen-2-yl)ethene (TVT), or dithieno[3,2-b:2',3'-d]thiophene (DTT)]. A PDPP2DT-F2T2 D-A polymer was synthesized as well to compare optical, electronic, and photovoltaic properties. The absorption peaks of the terpolymers (PDPPF2T2DPP-T2, PDPPF2T2DPP-TVT, and PDPPF2T2DPP-DTT) were longer (λ max = 801-810 nm) than the peak of the PDPP2DT-F2T2 polymer (λ max = 799 nm), which is associated with the high-lying HOMO levels of the terpolymers (-5.08 to -5.13 eV) compared with the level of the PDPP2DT-F2T2 polymer (-5.38 eV). The photovoltaic properties of these DPP-based polymers were investigated under simulated AM 1.5G sunlight (100 mW cm-2) with a conventional structure (ITO/PEDOT:PSS/polymer:PC71BM/Al). The open-circuit voltages (V oc) of photovoltaic devices containing the terpolymers were slightly lower (0.68-0.70 V) than the V oc of the device containing the PDPP2DT-F2T2 polymer (0.79 V). The short-circuit current (J sc) of the PDPPF2T2DPP-DTT device was significantly improved (14.14 mA cm-2) compared with that of the PDPP2DT-F2T2 device (8.29 mA cm-2). As a result, the power conversion efficiency (PCE) of the PDPPF2T2DPP-DTT device (6.35%) was increased by 33% compared with that of the simple D-A-type PDPP2DT-F2T2 device (4.78%). The highest J sc and PCE values (the PDPPF2T2DPP-DTT device) were attributed to an optimal nanoscopically mixed morphology and strong interchain packing with a high face-on orientation in the blend film state. The study demonstrated that our strategy of using multiple donors in a regio-regular alternating fashion could fine-tune the optical, electronic, and morphological properties of D-A-type polymers, enhancing the performance of polymer solar cells.

14.
ACS Appl Mater Interfaces ; 10(38): 32492-32500, 2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30129359

ABSTRACT

We report synthesis of a new poly(4-(4,4-bis(2-ethylhexyl)-4 H-silolo[3,2- b:4,5- b']dithiophene-2-yl)-7-(4,4-bis(2-ethylhexyl)-6-(selenophene-2-yl)-4 H-silolo[3,2- b:4,5- b']dithiophene-2-yl)-5,6-difluorobenzo[ c][1,2,5]thiadiazole (PDFDSe) polymer based on planar 4,7-bis(4,4-bis(2-ethylhexyl)-4 H-silolo[3,2- b:4,5- b']dithiophen-2-yl)-5,6-difluorobenzo[ c][1,2,5]thiadiazole (DFD) moieties and selenophene linkages. The planar backboned PDFDSe polymer exhibits highest occupied molecular orbital and lowest unoccupied molecular orbital levels of -5.13 and -3.56 eV, respectively, and generates well-packed highly crystalline states in films with exclusive edge-on orientations. PDFDSe thin film was incorporated as a channel material in top-gate bottom-contact organic thin-film transistor with a solid-state electrolyte gate insulator (SEGI) composed of poly(vinylidene difluoride-trifluoroethylene)/poly(vinylidene fluoride- co-hexafluroropropylene)/1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, which exhibited a remarkably high hole mobility up to µ = 20.3 cm2 V-1 s-1 corresponding to effective hole mobility exceeding 5 cm2 V-1 s-1 and a very low threshold voltage of -1 V. These device characteristics are associated with the high carrier density in the semiconducting channel region, induced by the high capacitance of the SEGI layer. The excellent carrier mobility from the PDFDSe/SEGI device demonstrates a great potential of semiconducting polymer thin-film transistors as electronic components in future electronic applications.

15.
ACS Appl Mater Interfaces ; 9(46): 40503-40515, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29090568

ABSTRACT

We report high-performance top-gate bottom-contact flexible polymer field-effect transistors (FETs) fabricated by flow-coating diketopyrrolopyrrole (DPP)-based and naphthalene diimide (NDI)-based polymers (P(DPP2DT-T2), P(DPP2DT-TT), P(DPP2DT-DTT), P(NDI2OD-T2), P(NDI2OD-F2T2), and P(NDI2OD-Se2)) as semiconducting channel materials. All of the polymers displayed good FET characteristics with on/off current ratios exceeding 107. The highest hole mobility of 1.51 cm2 V-1 s-1 and the highest electron mobility of 0.85 cm2 V-1 s-1 were obtained from the P(DPP2DT-T2) and P(NDI2OD-Se2) polymer FETs, respectively. The impacts of the polymer structures on the FET performance are well-explained by the interplay between the crystallinity, the tendency of the polymer backbone to adopt an edge-on orientation, and the interconnectivity of polymer fibrils in the film state. Additionally, we demonstrated that all of the flexible polymer-based FETs were highly resistant to tensile stress, with negligible changes in their carrier mobilities and on/off ratios after a bending test. Conclusively, these high-performance, flexible, and durable FETs demonstrate the potential of semiconducting conjugated polymers for use in flexible electronic applications.

16.
ACS Appl Mater Interfaces ; 9(34): 28817-28827, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28783949

ABSTRACT

High carrier mobilities have recently been achieved in polymer field effect transistors (FETs). However, many of these polymer FET devices require the use of chlorinated solvents such as chloroform (CF), chlorobenzene (CB), and o-dichlorobenzene (DCB) during fabrication. The use of these solvents is highly restricted in industry because of health and environmental issues. Here, we report the synthesis of a low band gap (1.43 eV, 870 nm) semiconducting polymer (PDPP2DT-F2T2) having a planar geometry, which can be readily processable with nonchlorinated solvents such as toluene (TOL), o-xylene (XY), and 1,2,4-trimethylbenzene (TMB). We performed structural characterization of PDPP2DT-F2T2 films prepared from different solvents, and the electrical properties of the films were measured in the context of FETs. The devices exhibited an ambipolar behavior with hole dominant transport. Hole mobilities increased with increasing boiling point (bp) of the nonchlorinated solvents: 0.03, 0.05, and 0.10 cm2 V-1 s-1 for devices processed using TOL, XY, and TMB, respectively. Thermal annealing further improved the FET performance. TMB-based polymer FETs annealed at 200 °C yielded a maximum hole mobility of 1.28 cm2 V-1 s-1, which is far higher than the 0.43 cm2 V-1 s-1 obtained from the CF-based device. This enhancement was attributed to increased interchain interactions as well as improved long-range interconnection between fibrous domains. Moreover, all of the nonchlorinated solutions generated purely edge-on orientations of the polymer chains, which is highly beneficial for carrier transport in FET devices. Furthermore, we fabricated an array of flexible TMB-processed PDPP2DT-F2T2 FETs on the plastic PEN substrates. These devices demonstrated excellent carrier mobilities and negligible degradation after 300 bending cycles. Overall, we demonstrated that the organized assembly of polymer chains can be achieved by slow drying using high bp nonchlorinated solvents and a post thermal treatment. Furthermore, we showed that polymer FETs processed using high bp nonhalogenated solvents may outperform those processed using halogenated solvents.

17.
Nat Commun ; 8: 14658, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28272396

ABSTRACT

Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion···carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level.

18.
ACS Appl Mater Interfaces ; 9(8): 7322-7330, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28164692

ABSTRACT

Understanding the sensing mechanism in organic chemical sensors is essential for improving the sensing performance such as detection limit, sensitivity, and other response/recovery time, selectivity, and reversibility for real applications. Here, we report a highly sensitive printed ammonia (NH3) gas sensor based on organic thin film transistors (OTFTs) with fluorinated difluorobenzothiadiazole-dithienosilole polymer (PDFDT). These sensors detected NH3 down to 1 ppm with high sensitivity (up to 56%) using bar-coated ultrathin (<4 nm) PDFDT layers without using any receptor additives. The sensing mechanism was confirmed by cyclic voltammetry, hydrogen/fluorine nuclear magnetic resonance, and UV/visible absorption spectroscopy. PDFDT-NH3 interactions comprise hydrogen bonds and electrostatic interactions between the PDFDT polymer backbone and NH3 gas molecules, thus lowering the highest occupied molecular orbital levels, leading to hole trapping in the OTFT sensors. Additionally, density functional theory calculations show that gaseous NH3 molecules are captured via cooperation of fluorine atoms and dithienosilole units in PDFDT. We verified that incorporation of functional groups that interact with a specific gas molecule in a conjugated polymer is a promising strategy for producing high-performance printed OTFT gas sensors.

19.
J Phys Chem B ; 116(17): 5097-110, 2012 May 03.
Article in English | MEDLINE | ID: mdl-22512849

ABSTRACT

4-Azidoproline (Azp) can tune the stability of the polyproline II (P(II)) conformation in collagen. The azido group in the 4R and 4S configurations stabilizes and destabilizes the P(II) conformation, respectively. To obtain insights into the dependence of the conformational stability on the azido configuration, we carried out Fourier transform (FT) IR experiments with four 4-azidoproline derivatives, Ac-(4R/S)-Azp-(NH/O)Me. We found that the amide I and azido IR spectra are different depending on the azido configuration and C-terminal structure. The origin of such spectral differences between 4R and 4S configurations and between C-terminal methylamide and ester ends was elucidated by quantum chemistry calculations in combination with (1)H NMR and time- and frequency-resolved IR pump-probe spectroscopy. We found that the azido configurations and C-terminal structures affect intramolecular interactions, which are responsible for the ensuing conformational and thereby IR spectral differences. Consequently, 4-azidoproline conformations modulated by azido configurations can be probed by IR spectroscopy. These findings suggest that 4-azidoproline can be both a structure-control and -probing element, which enables the infrared tracking of proline roles in protein structure, function, and dynamics.


Subject(s)
Azides/chemistry , Proline/analogs & derivatives , Amides/chemistry , Molecular Conformation , Proline/chemistry , Quantum Theory , Spectroscopy, Fourier Transform Infrared , Stereoisomerism
20.
Phys Chem Chem Phys ; 14(14): 4857-74, 2012 Apr 14.
Article in English | MEDLINE | ID: mdl-22374579

ABSTRACT

Recent measurements using two-dimensional electronic spectroscopy (2D ES) have shown that the initial dynamic response of photosynthetic proteins can involve quantum coherence. We show how electronic coherence can be differentiated from vibrational coherence in 2D ES. On that basis we conclude that both electronic and vibrational coherences are observed in the phycobiliprotein light-harvesting complex PC645 from Chroomonas sp. CCMP270 at ambient temperature. These light-harvesting antenna proteins of the cryptophyte algae are suspended in the lumen, where the pH drops significantly under sustained illumination by sunlight. Here we measured 2D ES of PC645 at increasing levels of acidity to determine if the change in pH affects the quantum coherence; quantitative analysis reveals that the dynamics are insensitive to the pH change.


Subject(s)
Light-Harvesting Protein Complexes/chemistry , Light , Photosynthesis , Quantum Theory , Cryptophyta/metabolism , Hydrogen-Ion Concentration , Light-Harvesting Protein Complexes/metabolism , Signal-To-Noise Ratio , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...