Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Cardiovasc Med ; 21(4): 517-530, 2020 12 30.
Article in English | MEDLINE | ID: mdl-33387997

ABSTRACT

The SARS-CoV-2 virus spreading across the world has led to surges of COVID-19 illness, hospitalizations, and death. The complex and multifaceted pathophysiology of life-threatening COVID-19 illness including viral mediated organ damage, cytokine storm, and thrombosis warrants early interventions to address all components of the devastating illness. In countries where therapeutic nihilism is prevalent, patients endure escalating symptoms and without early treatment can succumb to delayed in-hospital care and death. Prompt early initiation of sequenced multidrug therapy (SMDT) is a widely and currently available solution to stem the tide of hospitalizations and death. A multipronged therapeutic approach includes 1) adjuvant nutraceuticals, 2) combination intracellular anti-infective therapy, 3) inhaled/oral corticosteroids, 4) antiplatelet agents/anticoagulants, 5) supportive care including supplemental oxygen, monitoring, and telemedicine. Randomized trials of individual, novel oral therapies have not delivered tools for physicians to combat the pandemic in practice. No single therapeutic option thus far has been entirely effective and therefore a combination is required at this time. An urgent immediate pivot from single drug to SMDT regimens should be employed as a critical strategy to deal with the large numbers of acute COVID-19 patients with the aim of reducing the intensity and duration of symptoms and avoiding hospitalization and death.


Subject(s)
COVID-19 Drug Treatment , Leprostatic Agents/therapeutic use , Pandemics , SARS-CoV-2 , Telemedicine/methods , COVID-19/epidemiology , Drug Therapy, Combination , Humans
2.
Nutr Res ; 29(2): 114-22, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19285602

ABSTRACT

Paraoxonase 1 (PON1) is a cardioprotective enzyme associated with high-density lipoprotein (HDL). We tested the hypothesis that vitamin C protects HDL and PON1 from deleterious effects of hypochlorous acid, a proinflammatory oxidant. In our experiments, HDL (from human plasma) or diluted human plasma was incubated with hypochlorite in either the absence (control) or presence of vitamin C before measuring chemical modification and PON1 activities. Vitamin C minimized chemical modification of HDL, as assessed by lysine modification and accumulation of chloramines. In the absence of vitamin C, chloramines accumulated to 114 +/- 4 micromol/L in HDL incubated with a 200-fold molar excess of hypochlorite; but addition of vitamin C (200 micromol/L) limited formation to 36 +/- 6 micromol/L (P < .001). In plasma exposed to hypochlorite, IC(50) values of 1.2 +/- 0.1, 9.5 +/- 1.0, and 5.0 +/- 0.6 mmol/L were determined for PON1's phosphotriesterase, arylesterase, and (physiologic) lactonase activities, respectively. Vitamin C lessened this inhibitory effect of hypochlorite on PON1 activities. In plasma supplemented with vitamin C (400 micromol/L), PON1 phosphotriesterase activity was 72% +/- 17% of normal after incubation with hypochlorite (2 mmol/L), compared with 42% +/- 6% for unsupplemented plasma (P < .05). Similar effects were seen for other PON1 activities. In some experiments, vitamin C also appeared to reverse hypochlorite-mediated loss of PON1 phosphotriesterase activity; but this effect was not observed for the other PON1 activities. In conclusion, vitamin C attenuated hypochlorite-mediated loss of PON1 activity in vitro and may, therefore, preserve cardioprotective properties of HDL during inflammation.


Subject(s)
Antioxidants/pharmacology , Aryldialkylphosphatase/blood , Ascorbic Acid/pharmacology , Hypochlorous Acid/pharmacology , Lipoproteins, HDL/metabolism , Ascorbic Acid/blood , Carboxylic Ester Hydrolases/blood , Carboxylic Ester Hydrolases/metabolism , Cardiovascular Diseases/prevention & control , Humans , Lipoproteins, LDL/metabolism , Phosphoric Triester Hydrolases/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...