Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Acc Chem Res ; 53(11): 2600-2610, 2020 11 17.
Article in English | MEDLINE | ID: mdl-32969638

ABSTRACT

In nature, light is harvested by photoactive proteins to drive a range of biological processes, including photosynthesis, phototaxis, vision, and ultimately life. Bacteriorhodopsin, for example, is a protein embedded within archaeal cell membranes that binds the chromophore retinal within its hydrophobic pocket. Exposure to light triggers regioselective photoisomerization of the confined retinal, which in turn initiates a cascade of conformational changes within the protein, triggering proton flux against the concentration gradient, providing the microorganisms with the energy to live. We are inspired by these functions in nature to harness light energy using synthetic photoswitches under confinement. Like retinal, synthetic photoswitches require some degree of conformational flexibility to isomerize. In nature, the conformational change associated with retinal isomerization is accommodated by the structural flexibility of the opsin host, yet it results in steric communication between the chromophore and the protein. Similarly, we strive to design systems wherein isomerization of confined photoswitches results in steric communication between a photoswitch and its confining environment. To achieve this aim, a balance must be struck between molecular crowding and conformational freedom under confinement: too much crowding prevents switching, whereas too much freedom resembles switching of isolated molecules in solution, preventing communication.In this Account, we discuss five classes of synthetic light-switchable compounds-diarylethenes, anthracenes, azobenzenes, spiropyrans, and donor-acceptor Stenhouse adducts-comparing their behaviors under confinement and in solution. The environments employed to confine these photoswitches are diverse, ranging from planar surfaces to nanosized cavities within coordination cages, nanoporous frameworks, and nanoparticle aggregates. The trends that emerge are primarily dependent on the nature of the photoswitch and not on the material used for confinement. In general, we find that photoswitches requiring less conformational freedom for switching are, as expected, more straightforward to isomerize reversibly under confinement. Because these compounds undergo only small structural changes upon isomerization, however, switching does not propagate into communication with their environment. Conversely, photoswitches that require more conformational freedom are more challenging to switch under confinement but also can influence system-wide behavior.Although we are primarily interested in the effects of geometric constraints on photoswitching under confinement, additional effects inevitably emerge when a compound is removed from solution and placed within a new, more crowded environment. For instance, we have found that compounds that convert to zwitterionic isomers upon light irradiation often experience stabilization of these forms under confinement. This effect results from the mutual stabilization of zwitterions that are brought into close proximity on surfaces or within cavities. Furthermore, photoswitches can experience preorganization under confinement, influencing the selectivity and efficiency of their photoreactions. Because intermolecular interactions arising from confinement cannot be considered independently from the effects of geometric constraints, we describe all confinement effects concurrently throughout this Account.

2.
J Am Chem Soc ; 141(2): 810-814, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30618243

ABSTRACT

In this Communication, we introduce transmembrane anion transport with pnictogen-bonding compounds and compare their characteristics with chalcogen- and halogen-bonding analogues. Tellurium-centered chalcogen bonds are at least as active as antimony-centered pnictogen bonds, whereas iodine-centered halogen bonds are 3 orders of magnitude less active. Irregular voltage-dependent single-channel currents, high gating charges, and efficient dye leakage support for the formation of bulky, membrane-disruptive supramolecular amphiphiles due to "too strong" binding of anions to tris(perfluorophenyl)stibanes. In contrast, the chalcogen-bonding bis(perfluorophenyl)tellanes do not cause leakage and excel as carriers with nanomolar activity, with P(Cl/Na) = 10.4 for anion/cation selectivity and P(Cl/NO3) = 4.5 for anion selectivity. The selectivities are lower with pnictogen-bonding carriers because their membrane-disturbing 3D structure also affects weaker binders ( P(Cl/Na) = 2.1, P(Cl/NO3) = 2.5). Their 2D structure, directionality, hydrophobicity, and support from proximal anion-π interactions are suggested to contribute to the unique power of chalcogen bonds to transport anions across lipid bilayer membranes.

3.
Chemistry ; 23(46): 10987-10991, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28675774

ABSTRACT

Comprehensive structural, spectroscopic, and quantum chemical analyses of new donor-acceptor complexes between N-heterocyclic carbenes and 1,2,5-telluradiazoles and a comparison with previously known complexes involving tellurenyl cations showed that the dative C-Te bonds cannot be solitarily described with only one Lewis formula. Canonical Lewis formulas that denote covalency and arrows emphasizing ionicity complement each other in varying extents. Evaluation of the relative weights of these resonance forms requires proper bonding description with a well-balanced toolbox of analytical methods. If for conciseness only, one resonance form is used, it must be the most significant one according to the analytical evaluation. If unclear, all significant resonance forms should be displayed.

4.
Dalton Trans ; 46(20): 6570-6579, 2017 May 23.
Article in English | MEDLINE | ID: mdl-28429811

ABSTRACT

Iodine oxidation of bis[2-(hydroxyiminomethyl)phenyl] dichalcogenides yields benzo-1,2-chalcogenazole 2-oxides. Annulated derivatives of iso-tellurazole N-oxides spontaneously aggregate into cyclic tetra- and hexamers through TeO chalcogen bonding; the structures of the co-crystals with benzene and CH2Cl2 illustrate the ability of these macrocycles to interact with small guest molecules. The selenium congener crystallizes forming a supramolecular polymer. VT NMR indicates that both compounds aggregate in solution but only at low temperature in the selenium case. The different abilities of these molecules to engage in supramolecular interactions are interpreted on the basis of their electronic properties evaluated with DFT-D3 calculations.

5.
Dalton Trans ; 45(8): 3285-93, 2016 Feb 28.
Article in English | MEDLINE | ID: mdl-26765368

ABSTRACT

Despite their versatility, the application of telluradiazoles as supramolecular building blocks is considerably constrained by their sensitivity to moisture. Albeit more robust, their selenium analogues form weaker supramolecular interactions. These, however, are enhanced when one nitrogen atom is bonded to an alkyl group. Here we investigate general methods for the synthesis of such derivatives. Methyl, iso-propyl and tert-butyl benzo-2,1,3-selenadiazolium cations were prepared by direct alkylation or cyclo-condensation of the alkyl-phenylenediamine with selenous acid. While the former reaction only proceeds with the primary and tertiary alkyl iodides, the latter is very efficient. Difficulties reported in earlier literature are attributable to the formation of adducts of benzoselenadiazole with its alkylated cations and side reactions initiated by aerobic oxidation of iodide. However, the cations themselves are resilient to oxidation and stable in acidic to neutral aqueous medium. X-ray crystallography was used in the identification and characterization of the following compounds: [C6H4N2(R)Se](+)X(-), (R = CH(CH3)2, C(CH3)3; X = I(-), I3(-)], [C6H4N2(CH3)Se](+)I(-), and [C6H4N2Se][C6H4N2(CH3)Se]2I2. Formation of SeN secondary bonding interactions (chalcogen bonds) was only observed in the last structure as anion binding to selenium is a strong competitor. The relative strengths of those forces and the structural preferences they enforce were assessed with DFT-D3 calculations supplemented by AIM analysis of the electron density.

SELECTION OF CITATIONS
SEARCH DETAIL
...