Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 8(2): 201686, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33972861

ABSTRACT

The diverse living Australian lizard fauna contrasts greatly with their limited Oligo-Miocene fossil record. New Oligo-Miocene fossil vertebrates from the Namba Formation (south of Lake Frome, South Australia) were uncovered from multiple expeditions from 2007 to 2018. Abundant disarticulated material of small vertebrates was concentrated in shallow lenses along the palaeolake edges, now exposed on the western of Lake Pinpa also known from Billeroo Creek 2 km northeast. The fossiliferous lens within the Namba Formation hosting the abundant aquatic (such as fish, platypus Obdurodon and waterfowl) and diverse terrestrial (such as possums, dasyuromorphs and scincids) vertebrates and is hereafter recognized as the Fish Lens. The stratigraphic provenance of these deposits in relation to prior finds in the area is also established. A new egerniine scincid taxon Proegernia mikebulli sp. nov. described herein, is based on a near-complete reconstructed mandible, maxilla, premaxilla and pterygoid. Postcranial scincid elements were also recovered with this material, but could not yet be confidently associated with P. mikebulli. This new taxon is recovered as the sister species to P. palankarinnensis, in a tip-dated total-evidence phylogenetic analysis, where both are recovered as stem Australian egerniines. These taxa also help pinpoint the timing of the arrival of scincids to Australia, with egerniines the first radiation to reach the continent.

2.
J Evol Biol ; 26(12): 2729-38, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24256520

ABSTRACT

Adding new taxa to morphological phylogenetic analyses without substantially revising the set of included characters is a common practice, with drawbacks (undersampling of relevant characters) and potential benefits (character selection is not biased by preconceptions over the affinities of the 'retrofitted' taxon). Retrofitting turtles (Testudines) and other taxa to recent reptile phylogenies consistently places turtles with anapsid-grade parareptiles (especially Eunotosaurus and/or pareiasauromorphs), under both Bayesian and parsimony analyses. This morphological evidence for turtle-parareptile affinities appears to contradict the robust genomic evidence that extant (living) turtles are nested within diapsids as sister to extant archosaurs (birds and crocodilians). However, the morphological data are almost equally consistent with a turtle-archosaur clade: enforcing this molecular scaffold onto the morphological data does not greatly increase tree length (parsimony) or reduce likelihood (Bayesian inference). Moreover, under certain analytic conditions, Eunotosaurus groups with turtles and thus also falls within the turtle-archosaur clade. This result raises the possibility that turtles could simultaneously be most closely related to a taxon traditionally considered a parareptile (Eunotosaurus) and still have archosaurs as their closest extant sister group.


Subject(s)
Phylogeny , Turtles/classification , Animals
3.
J Evol Biol ; 23(12): 2685-93, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21077974

ABSTRACT

The viviparous sea snakes (Hydrophiini) are by far the most successful living marine reptiles, with ∼ 60 species that comprise a prominent component of shallow-water marine ecosystems throughout the Indo-West Pacific. Phylogenetically nested within the ∼ 100 species of terrestrial Australo-Melanesian elapids (Hydrophiinae), molecular timescales suggest that the Hydrophiini are also very young, perhaps only ∼ 8-13 Myr old. Here, we use likelihood-based analyses of combined phylogenetic and taxonomic data for Hydrophiinae to show that the initial invasion of marine habitats was not accompanied by elevated diversification rates. Rather, a dramatic three to six-fold increase in diversification rates occurred at least 3-5 Myr after this transition, in a single nested clade: the Hydrophis group accounts for ∼ 80% of species richness in Hydrophiini and ∼ 35% of species richness in (terrestrial and marine) Hydrophiinae. Furthermore, other co-distributed lineages of viviparous sea snakes (and marine Laticauda, Acrochordus and homalopsid snakes) are not especially species rich. Invasion of the oceans has not (by itself) accelerated diversification in Hydrophiini; novelties characterizing the Hydrophis group alone must have contributed to its evolutionary and ecological success.


Subject(s)
Elapidae/genetics , Genetic Speciation , Phylogeny , Adaptation, Biological , Animals , Biodiversity , Elapidae/physiology , Likelihood Functions
4.
J Evol Biol ; 22(11): 2243-57, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19780874

ABSTRACT

The emerging molecular evolutionary tree for placental mammals differs greatly from morphological trees, leading to repeated suggestions that morphology is uninformative at this level. This view is here refuted empirically, using an extensive morphological and molecular dataset totalling 17 431 characters. When analysed alone, morphology indeed is highly misleading, contradicting nearly every clade in the preferred tree (obtained from the molecular or the combined data). Widespread homoplasy overrides historical signal. However, when added to the molecular data, morphology surprisingly increases support for most clades in the preferred tree. The homoplasy in the morphology is incongruent with all aspects of the molecular signal, while the historical signal in the morphology is congruent with (and amplifies) the historical signal in the molecular data. Thus, morphology remains relevant in the genomic age, providing vital independent corroboration of the molecular tree of mammals.


Subject(s)
Mammals/anatomy & histology , Phylogeny , Animals , Bayes Theorem , Classification/methods , DNA, Mitochondrial/chemistry , Exons , INDEL Mutation , Introns , Mammals/genetics
5.
J Evol Biol ; 22(6): 1308-16, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19490385

ABSTRACT

A combined analysis of nuclear, mitochondrial and morphological data robustly resolves snakes as the sister taxon to anguimorph 'lizards'. Analysed in isolation, nuclear DNA (nDNA) produces a trichotomy between snakes, iguanians and anguimorphs, mitochondrial DNA (mtDNA) is largely uninformative at deeper levels, and morphology tends to nest snakes deep within anguimorphs or with various legless squamate groups. When analysed simultaneously, the nuclear signal is sufficiently strong that mtDNA and morphology are constrained to choose between alternative resolutions of the iguanian-anguimorph-snake trichotomy (generated by the nDNA) - and both support the snake-anguimorph solution. Combined analyses of fast-evolving or idiosyncratically evolving markers (mtNDA, morphology) with conservative traits (e.g. nuclear genes) might be the best way to resolve ancient, closely spaced divergences. Fast or idiosyncratic markers potentially provide the most information about short, ancient internodes, but can converge on spurious trees if analysed in isolation. However, if constrained to only choosing between plausible trees, such data can contribute unique and valuable phylogenetic signal that resolves such problematic divergences.


Subject(s)
DNA, Mitochondrial , Lizards/genetics , Phylogeny , Snakes/genetics , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Lizards/anatomy & histology , Snakes/anatomy & histology
7.
J Evol Biol ; 21(3): 682-95, 2008 May.
Article in English | MEDLINE | ID: mdl-18384538

ABSTRACT

One of the most prolific radiations of venomous snakes, the Australo-Melanesian Hydrophiinae includes approximately 100 species of Australasian terrestrial elapids plus all approximately 60 species of viviparous sea snakes. Here, we estimate hydrophiine relationships based on a large data set comprising 5800 bp drawn from seven genes (mitochondrial: ND4, cytb, 12S, 16S; nuclear: rag1, cmos, myh). These data were analysed using parsimony, likelihood and Bayesian methods to better resolve hydrophiine phylogeny and provide a timescale for the terrestrial and marine radiations. Among oviparous forms, Cacophis, Furina and Demansia are basal to other Australian elapids (core oxyuranines). The Melanesian Toxicocalamus and Aspidomorphus group with Demansia, indicating multiple dispersal events between New Guinea and Australia. Oxyuranus and Pseudonaja form a robust clade. The small burrowing taxa form two separate clades, one consisting of Vermicella and Neelaps calanotus, and the other including Simoselaps, Brachyurophis and Neelaps bimaculatus. The viviparous terrestrial elapids form three separate groups: Acanthophis, the Rhinoplocephalus group and the Notechis-Hemiaspis group. True sea snakes (Hydrophiini) are robustly united with the Notechis-Hemiaspis group. Many of the retrieved groupings are consistent with previous molecular and morphological analyses, but the polyphyly of the viviparous and burrowing groups, and of Neelaps, are novel results. Bayesian relaxed clock analyses indicate very recent divergences: the approximately 160 species of the core Australian radiation (including sea snakes) arose within the last 10 Myr, with most inter-generic splits dating to between 10 and 6 Ma. The Hydrophis sea snake lineage is an exceptionally rapid radiation, with > 40 species evolving within the last 5 Myr.


Subject(s)
Elapidae/genetics , Evolution, Molecular , Genetic Variation , Phylogeny , Animals , Australasia , Genetic Speciation
8.
J Evol Biol ; 16(2): 179-88, 2003 Mar.
Article in English | MEDLINE | ID: mdl-14635856

ABSTRACT

The validity of the species category (rank) as a distinct level of biological organization has been questioned. Phenetic, cohesion and monophyletic species concepts do not delimit species-level taxa that are qualitatively distinct from lower or higher taxa: all organisms throughout the tree of life exhibit varying degrees of similarity, cohesion, and monophyly. In contrast, interbreeding concepts delimit species-level taxa characterized by a phenomenon (regular gene flow) not found in higher taxa, making the species category a distinct level of biological organization. Only interbreeding concepts delimit species-level taxa that are all comparable according to a biologically meaningful criterion and qualitatively distinct from entities assigned to other taxonomic categories. Consistent application of interbreeding concepts can result in counterintuitive taxonomies--e.g. many wide polytypic species in plants and narrow cryptic species in animals. However, far from being problematic, such differences are biologically illuminating--reflecting differing barriers to gene flow in different clades. Empirical problems with interbreeding concepts exist, but many of these also apply to other species concepts, whereas others are not as severe as some have argued. A monistic view of species using interbreeding concepts will encounter strong historical inertia, but can save the species category from redundancy with other categories, and thus justify continued recognition of the species category.


Subject(s)
Classification , Phylogeny , Reproduction/genetics , Species Specificity
9.
Syst Biol ; 52(1): 15-22, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12554436

ABSTRACT

In simultaneous analyses of multiple data partitions, the trees relevant when measuring support for a clade are the optimal tree, and the best tree lacking the clade (i.e., the most reasonable alternative). The parsimony-based method of partitioned branch support (PBS) "forces" each data set to arbitrate between the two relevant trees. This value is the amount each data set contributes to clade support in the combined analysis, and can be very different to support apparent in separate analyses. The approach used in PBS can also be employed in likelihood: a simultaneous analysis of all data retrieves the maximum likelihood tree, and the best tree without the clade of interest is also found. Each data set is fitted to the two trees and the log-likelihood difference calculated, giving "partitioned likelihood support" (PLS) for each data set. These calculations can be performed regardless of the complexity of the ML model adopted. The significance of PLS can be evaluated using a variety of resampling methods, such as the Kishino-Hasegawa test, the Shimodiara-Hasegawa test, or likelihood weights, although the appropriateness and assumptions of these tests remains debated.


Subject(s)
Data Interpretation, Statistical , Likelihood Functions , Phylogeny , Animals , Artiodactyla/genetics , Evolution, Molecular , Models, Genetic , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL
...