Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 23(1): 3, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36600197

ABSTRACT

BACKGROUND: Exploring the microbiome in multiple body sites of a livestock species informs approaches to promote its health and performance through efficient and sustainable modulation of these microbial ecosystems. Here, we employed 16S rRNA gene sequencing to describe the microbiome in the oropharyngeal cavity, proximal colon, and vaginal tract of Jeju Black pigs (JBP), which are native to the Korean peninsula. RESULTS: We sampled nine 7-month-old JBP gilts raised under controlled conditions. The most abundant phyla that we found within the oropharyngeal microbiota were Proteobacteria, Bacteroidetes, Fusobacteria and Firmicutes, collectively providing core features from twenty-five of their genera. We also found a proximal colonic microbial core composed of features from twenty of the genera of the two predominant phyla, Firmicutes, and Bacteroidetes. Remarkably, within the JBP vaginal microbiota, Bacteroidetes dominated at phylum level, contrary to previous reports regarding other pig breeds. Features of the JBP core vaginal microbiota, came from seventeen genera of the major phyla Bacteroidetes, Firmicutes, Proteobacteria, and Fusobacteria. Although these communities were distinct, we found some commonalities amongst them. Features from the genera Streptococcus, Prevotella, Bacillus and an unclassified genus of the family Ruminococcaceae were ubiquitous across the three body sites. Comparing oropharyngeal and proximal colonic communities, we found additional shared features from the genus Anaerorhabdus. Between oropharyngeal and vaginal ecosystems, we found other shared features from the genus Campylobacter, as well as unclassified genera from the families Fusobacteriaceae and Flavobacteriaceae. Proximal colonic and vaginal microbiota also shared features from the genera Clostridium, Lactobacillus, and an unclassified genus of Clostridiales. CONCLUSIONS: Our results delineate unique and ubiquitous features within and across the oropharyngeal, proximal colonic and vaginal microbial communities in this Korean native breed of pigs. These findings provide a reference for future microbiome-focused studies and suggest a potential for modulating these communities, utilizing ubiquitous features, to enhance health and performance of the JBP.


Subject(s)
Microbiota , Swine , Animals , Female , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Sus scrofa , Firmicutes/genetics , Proteobacteria/genetics , Bacteroidetes/genetics , Clostridiales/genetics , Colon , Republic of Korea
2.
Sci Rep ; 12(1): 14595, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36109557

ABSTRACT

Synbiotics are feed supplements with the potential to promote health and productivity in pigs partly, through modulation of the intestinal microbiome. Our study used shotgun sequencing and 16S rRNA gene sequencing techniques to characterize the effect of a synbiotic containing three Lactobacillus species and a fructo-oligosaccharide on the proximal colonic microbiome of 4- to 7-month-old Korean native black gilts. With shotgun sequencing we constructed unique metagenome-assembled genomes of gut microbiota in Native Black Pig for the first time, which we then used for downstream analysis. Results showed that synbiotic treatment did not alter microbial diversity and evenness within the proximal colons, but altered composition of some members of the Lactobacillaceae, Enterococcaceae and Streptococcaceae families. Functional analysis of the shotgun sequence data revealed 8 clusters of orthologous groups (COGs) that were differentially represented in the proximal colonic microbiomes of synbiotic-treated Jeju black pigs relative to controls. In conclusion, our results show that administering this synbiotic causes changes in the functional capacity of the proximal colonic microbiome of the Korean native black pig. This study improves our understanding of the potential impact of synbiotics on the colonic microbiome of Korean native black pigs.


Subject(s)
Microbiota , Synbiotics , Animals , Female , Health Promotion , Metagenome , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Republic of Korea , Sus scrofa/genetics , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...