Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Immunol ; 6(55)2021 01 22.
Article in English | MEDLINE | ID: mdl-33483338

ABSTRACT

A major limitation to understanding the associations of human leukocyte antigen (HLA) and CD8+ and CD4+ T cell receptor (TCR) genes with disease pathophysiology is the technological barrier of identifying which HLA molecules, epitopes, and TCRs form functional complexes. Here, we present a high-throughput epitope identification system that combines capture of T cell-secreted cytokines by barcoded antigen-presenting cells (APCs), cell sorting, and next-generation sequencing to identify class I- and class II-restricted epitopes starting from highly complex peptide-encoding oligonucleotide pools. We engineered APCs to express anti-cytokine antibodies, a library of DNA-encoded peptides, and multiple HLA class I or II molecules. We demonstrate that these engineered APCs link T cell activation-dependent cytokines with the DNA that encodes the presented peptide. We validated this technology by showing that we could select known targets of viral epitope-, neoepitope-, and autoimmune epitope-specific TCRs, starting from mixtures of peptide-encoding oligonucleotides. Then, starting from 10 TCRß sequences that are found commonly in humans but lack known targets, we identified seven CD8+ or CD4+ TCR-targeted epitopes encoded by the human cytomegalovirus (CMV) genome. These included known epitopes, as well as a class I and a class II CMV epitope that have not been previously described. Thus, our cytokine capture-based assay makes use of a signal secreted by both CD8+ and CD4+ T cells and allows pooled screening of thousands of encoded peptides to enable epitope discovery for orphan TCRs. Our technology may enable identification of HLA-epitope-TCR complexes relevant to disease control, etiology, or treatment.


Subject(s)
Antigen-Presenting Cells/immunology , Epitope Mapping/methods , Epitopes, T-Lymphocyte/immunology , Receptors, Antigen, T-Cell/metabolism , Antigen Presentation , Antigen-Presenting Cells/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Engineering , Cytokines/metabolism , Epitopes, T-Lymphocyte/metabolism , HEK293 Cells , HeLa Cells , High-Throughput Screening Assays , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Humans , Jurkat Cells , Peptide Library , Receptors, Antigen, T-Cell/immunology
2.
Genome Res ; 28(12): 1812-1825, 2018 12.
Article in English | MEDLINE | ID: mdl-30446528

ABSTRACT

While genetic variants are known to be associated with overall gene abundance in stimulated immune cells, less is known about their effects on alternative isoform usage. By analyzing RNA-seq profiles of monocyte-derived dendritic cells from 243 individuals, we uncovered thousands of unannotated isoforms synthesized in response to influenza infection and type 1 interferon stimulation. We identified more than a thousand quantitative trait loci (QTLs) associated with alternate isoform usage (isoQTLs), many of which are independent of expression QTLs (eQTLs) for the same gene. Compared with eQTLs, isoQTLs are enriched for splice sites and untranslated regions, but depleted of sequences upstream of annotated transcription start sites. Both eQTLs and isoQTLs explain a significant proportion of the disease heritability attributed to common genetic variants. At the ERAP2 locus, we shed light on the function of the gene and how two frequent, highly differentiated haplotypes with intermediate frequencies could be maintained by balancing selection. At baseline and following type 1 interferon stimulation, the major haplotype is associated with low ERAP2 expression caused by nonsense-mediated decay, while the minor haplotype, known to increase Crohn's disease risk, is associated with high ERAP2 expression. In response to influenza infection, we found two uncharacterized isoforms expressed from the major haplotype, likely the result of multiple perfectly linked variants affecting the transcription and splicing at the locus. Thus, genetic variants at a single locus could modulate independent gene regulatory processes in innate immune responses and, in the case of ERAP2, may confer a historical fitness advantage in response to virus.


Subject(s)
Alternative Splicing , Aminopeptidases/genetics , Genetic Predisposition to Disease , Host-Pathogen Interactions/genetics , Influenza A virus , Influenza, Human/genetics , Influenza, Human/virology , Adolescent , Adult , Chromosome Mapping , Computational Biology/methods , Dendritic Cells/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Genetic Testing , Genetic Variation , Humans , Interferon Type I/metabolism , Male , Middle Aged , Models, Biological , Molecular Sequence Annotation , Monocytes/metabolism , Quantitative Trait Loci , Transcriptome , Young Adult
4.
AACE Clin Case Rep ; 2(4): e370-e373, 2016.
Article in English | MEDLINE | ID: mdl-27917400

ABSTRACT

OBJECTIVE: To review cases and increase awareness in clinicians treating patients who may be taking biotin. METHODS: We describe the presentation and workup of a woman with secondary progressive multiple sclerosis on high dose biotin with laboratory studies suggestive of thyrotoxicosis. RESULTS: Plasma samples showed laboratory evidence of elevated thyroid hormone levels with elevated free thyroxine >7.8 ng/dl (reference interval (RI) 0.9-1.7 ng/dl) and decreased thyroid stimulating hormone <0.02 uIU/ml (RI 0.50-5.70 uIU/ml). Laboratory values normalized when biotin was withheld prior to repeat testing. CONCLUSIONS: Our case report demonstrates that ingestion of high dose biotin in multiple sclerosis patients can cause interference with laboratory assessment of thyroid function. This interference causes laboratory values suggestive of thyrotoxicosis and can lead to unnecessary evaluation. Clinicians should be aware of the risk of laboratory interference in this patient demographic.

6.
Science ; 344(6183): 519-23, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24786080

ABSTRACT

To extend our understanding of the genetic basis of human immune function and dysfunction, we performed an expression quantitative trait locus (eQTL) study of purified CD4(+) T cells and monocytes, representing adaptive and innate immunity, in a multi-ethnic cohort of 461 healthy individuals. Context-specific cis- and trans-eQTLs were identified, and cross-population mapping allowed, in some cases, putative functional assignment of candidate causal regulatory variants for disease-associated loci. We note an over-representation of T cell-specific eQTLs among susceptibility alleles for autoimmune diseases and of monocyte-specific eQTLs among Alzheimer's and Parkinson's disease variants. This polarization implicates specific immune cell types in these diseases and points to the need to identify the cell-autonomous effects of disease susceptibility variants.


Subject(s)
Autoimmune Diseases/genetics , Autoimmunity/genetics , CD4-Positive T-Lymphocytes/immunology , Genetic Predisposition to Disease/genetics , Monocytes/immunology , Neurodegenerative Diseases/genetics , Adaptive Immunity/genetics , Alleles , Alzheimer Disease/ethnology , Alzheimer Disease/genetics , Autoimmune Diseases/ethnology , Ethnicity/genetics , Genetic Predisposition to Disease/ethnology , Genome-Wide Association Study , Humans , Immunity, Innate/genetics , Multiple Sclerosis/ethnology , Multiple Sclerosis/genetics , Neurodegenerative Diseases/ethnology , Parkinson Disease/ethnology , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Rheumatic Fever/ethnology , Rheumatic Fever/genetics , Transcriptome
7.
Science ; 343(6175): 1246980, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24604203

ABSTRACT

Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and computational approaches were applied to determine the effects of genetic variation on the induction of pathogen-responsive genes in human dendritic cells. We identified 121 common genetic variants associated in cis with variation in expression responses to Escherichia coli lipopolysaccharide, influenza, or interferon-ß (IFN-ß). We localized and validated causal variants to binding sites of pathogen-activated STAT (signal transducer and activator of transcription) and IRF (IFN-regulatory factor) transcription factors. We also identified a common variant in IRF7 that is associated in trans with type I IFN induction in response to influenza infection. Our results reveal common alleles that explain interindividual variation in pathogen sensing and provide functional annotation for genetic variants that alter susceptibility to inflammatory diseases.


Subject(s)
Dendritic Cells/immunology , Gene-Environment Interaction , Host-Pathogen Interactions/genetics , Interferon Regulatory Factor-7/genetics , STAT Transcription Factors/genetics , Adult , Autoimmune Diseases/genetics , Communicable Diseases/genetics , Dendritic Cells/drug effects , Escherichia coli , Female , Genetic Loci , Genome-Wide Association Study , HEK293 Cells , Humans , Influenza A virus , Interferon-beta/pharmacology , Lipopolysaccharides/immunology , Male , Middle Aged , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Transcriptome , Young Adult
8.
Nat Immunol ; 14(2): 179-85, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23263557

ABSTRACT

The innate immune system senses viral DNA that enters mammalian cells, or in aberrant situations self-DNA, and triggers type I interferon production. Here we present an integrative approach that combines quantitative proteomics, genomics and small molecule perturbations to identify genes involved in this pathway. We silenced 809 candidate genes, measured the response to dsDNA and connected resulting hits with the known signaling network. We identified ABCF1 as a critical protein that associates with dsDNA and the DNA-sensing components HMGB2 and IFI204. We also found that CDC37 regulates the stability of the signaling molecule TBK1 and that chemical inhibition of the CDC37-HSP90 interaction and several other pathway regulators potently modulates the innate immune response to DNA and retroviral infection.


Subject(s)
ATP-Binding Cassette Transporters/immunology , DNA, Viral/immunology , Dendritic Cells/immunology , Fibroblasts/immunology , Gene Expression Regulation/drug effects , Immunity, Innate , ATP-Binding Cassette Transporters/genetics , Animals , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Cycle Proteins/immunology , Chaperonins/antagonists & inhibitors , Chaperonins/genetics , Chaperonins/immunology , Cytosol/drug effects , Cytosol/metabolism , Cytosol/virology , DNA, Viral/genetics , Dendritic Cells/drug effects , Dendritic Cells/virology , Fibroblasts/drug effects , Fibroblasts/virology , Gene Expression Regulation/immunology , Gene Silencing , HIV-1/physiology , HMGB2 Protein/genetics , HMGB2 Protein/immunology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/immunology , Humans , Mice , Mice, Transgenic , Nuclear Proteins/genetics , Nuclear Proteins/immunology , Phosphoproteins/genetics , Phosphoproteins/immunology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Proteomics , RNA, Small Interfering/genetics , Signal Transduction/drug effects , Signal Transduction/immunology , Small Molecule Libraries/pharmacology , Vesiculovirus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...