Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 22(1): 434, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720370

ABSTRACT

BACKGROUND: Cardiometabolic disorders pose significant health risks globally. Metabolic syndrome, characterized by a cluster of potentially reversible metabolic abnormalities, is a known risk factor for these disorders. Early detection and intervention for individuals with metabolic abnormalities can help mitigate the risk of developing more serious cardiometabolic conditions. This study aimed to develop an image-derived phenotype (IDP) for metabolic abnormality from unenhanced abdominal computed tomography (CT) scans using deep learning. We used this IDP to classify individuals with metabolic syndrome and predict future occurrence of cardiometabolic disorders. METHODS: A multi-stage deep learning approach was used to extract the IDP from the liver region of unenhanced abdominal CT scans. In a cohort of over 2,000 individuals the IDP was used to classify individuals with metabolic syndrome. In a subset of over 1,300 individuals, the IDP was used to predict future occurrence of hypertension, type II diabetes, and fatty liver disease. RESULTS: For metabolic syndrome (MetS) classification, we compared the performance of the proposed IDP to liver attenuation and visceral adipose tissue area (VAT). The proposed IDP showed the strongest performance (AUC 0.82) compared to attenuation (AUC 0.70) and VAT (AUC 0.80). For disease prediction, we compared the performance of the IDP to baseline MetS diagnosis. The models including the IDP outperformed MetS for type II diabetes (AUCs 0.91 and 0.90) and fatty liver disease (AUCs 0.67 and 0.62) prediction and performed comparably for hypertension prediction (AUCs of 0.77). CONCLUSIONS: This study demonstrated the superior performance of a deep learning IDP compared to traditional radiomic features to classify individuals with metabolic syndrome. Additionally, the IDP outperformed the clinical definition of metabolic syndrome in predicting future morbidities. Our findings underscore the utility of data-driven imaging phenotypes as valuable tools in the assessment and management of metabolic syndrome and cardiometabolic disorders.


Subject(s)
Deep Learning , Metabolic Syndrome , Phenotype , Humans , Metabolic Syndrome/diagnostic imaging , Metabolic Syndrome/complications , Female , Male , Middle Aged , Tomography, X-Ray Computed , Cardiovascular Diseases/diagnostic imaging , Adult , Image Processing, Computer-Assisted/methods
2.
Article in English | MEDLINE | ID: mdl-38768397

ABSTRACT

The integration of multiomics data with detailed phenotypic insights from electronic health records marks a paradigm shift in biomedical research, offering unparalleled holistic views into health and disease pathways. This review delineates the current landscape of multimodal omics data integration, emphasizing its transformative potential in generating a comprehensive understanding of complex biological systems. We explore robust methodologies for data integration, ranging from concatenation-based to transformation-based and network-based strategies, designed to harness the intricate nuances of diverse data types. Our discussion extends from incorporating large-scale population biobanks to dissecting high-dimensional omics layers at the single-cell level. The review underscores the emerging role of large language models in artificial intelligence, anticipating their influence as a near-future pivot in data integration approaches. Highlighting both achievements and hurdles, we advocate for a concerted effort toward sophisticated integration models, fortifying the foundation for groundbreaking discoveries in precision medicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...